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Abstract—The method of direct numerical simulation is used to investigate temperature fluctuations in fully
developed turbulent liquid metal flows. Subgrid scale models using one transport equation account for the
turbulence not resolved by the finite difference grid. A special subgrid scale heat flux model for liquid metal
flows is deduced together with a method of calculating the model coefficients. At very small Peclet numbers
the temperatures become independent of model parameters.

Numerical results for the Nusselt number in plane channels and for radial temperature and eddy
conductivity profiles in annuli agree with published data. Nusselt numbers determined numerically for
annuli indicate that many empirical correlations overestimate the influence of the ratio of radii. The
numerical results for the eddy conductivity profiles may be used to reduce these problems. The statistical
properties of the temperature fluctuations simulated are within the scatter band of experimental data. The
numerical results confirm Lawn’s theory, giving reasonable heat flux correlation coefficients which depend

only weakly on the problem marking parameters.
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NOMENCLATURE

constant thermal diffusivity;
constant specific heat capacity;
subgrid scale heat flux coefficients;
channel width, R, — R, ;
turbulence energy, power spectral density;
grid surface, V/Ax;;

Nusselt number ;

pressure;

Peclet number, Re Pr;

friction Peclet number, Re* Pr;
Prandtl number, v/a;

turbulent Prandtl number, ¢,/ey;
radial heat flux;

specific volumetric heat source;
inner, outer wall radii (Fig. 1);
Reynolds number, *{u,>2D/v;
friction Reynolds number, u*D/v;
time;

temperature;

universal temperature, T/T*;

heat flux temperature, 4,,/(pc,u*);
typical relative standard deviation;
velocity component, indices refer to Fig. 1;
friction velocity, \/(z,/p);

grid volume, Ax, Ax, Ax,;
periodicity lengths, see Fig. 1;

grid widths;

wall distance, mostly y = R — R,.

Greek symbols

éj
&,
Exs

central finite difference operator;
turbulence dissipation;
eddy diffusivity
—u3 T"H/K0T/0x3) ;

for heat,

&m,  eddy diffusivity for momentum,
— a1y /{0uy /0x3)

v, kinematic viscosity ;

Py constant specific density;

yr,  correction factor in the subgrid scale heat
flux model, y; > 1;

T, radial shear stress.

Indices

i,f, space indices, Fig. 1;

t, turbulent ;

T, temperature;

w, wall.

Operator for any quantity Y

{Y), time mean value;

*¢Y>, channel volume mean value;

*Y,  mesh cell volume mean value, j',, Ydv;

Y,  mesh cell surface mean value, {;, Y d'f ;

Y, average over both walls, cart. k =0, cyl. k
= 1,
(Yu1 R} + Y, RE)/(RY + RY);

Y’,  fluctuating part of Y=Y —(Y), and Y’

= Y-V,

1. INTRODUCTION

WORKING conditions in heat generating fuel elements
of liquid metal cooled fast breeder reactors extend
from high Reynolds number turbulent flows for nor-
mal operation down to laminar flows in case of decay
heat removal. Thus, the models used to calculate the
detailed temperature fields within the fuel elements
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must account for molecular and turbulent heat trans-
ports alike. Usually, statistical turbulence models are
applied which are based on the Reynolds equations. In
most cases the unknown turbulent heat fluxes are
modeled by the eddy diffusivity concept. The experi-
mental determination of the eddy diffusivity for heat
(= eddy conductivity) ey is difficult, due to many
problems associated with the use of liquid metals. The
theoretical way of applying formulations for the
turbulent Prandtl number Pr, = ¢,,/ey suffers from the
same problems, because the models have to be fitted
against experimental data.

Even after recent publications on the subject of eddy
conductivities in liquid metal flows there are still many
open problems. In [1] a large number of experimental
data are summarized for the Nusselt number Nu, the
universal logarithmic temperature profile T* and for
the turbulent Prandtl number. In the region where
both the velocity and temperature profiles follow
logarithmic laws, the data shows a constant turbulent
Prandtl number depending neither on the wall dis-
tance y nor on the molecular Prandtl number Pr. This
cannot be used for low Peclet number flows, because in
this case, the conductive sublayer extends from the
wall almost to the center of the channel. Consequently,
there is no region of a logarithmic temperature profile.
Reynolds [2] discusses and classifies 30 different
methods of predicting turbulent Prandtl numbers.
Some methodological problems become evident, for
example, missing or wrong functional dependences on
the wall distance, the molecular Prandtl number, or
the Reynolds number. In the work by Dutt [3], some
discrepancies are noted between experimental and
theoretically predicted data, but doubts are thrown
upon the experimental data. Thermal contact re-
sistance, incomplete wetting and longitudinal con-
duction appear to be the main reasons. This may be
confirmed using the publication by Lawn [4]. Lawn
develops a spectral theory to predict turbulent tem-
perature fluctuations in liquid metals. In attempting to
check this theory by summarizing experimental data
for the turbulent Prandtl number, for the turbulent
heat flux, for the RMS value of temperature fluc-
tuations and cross stream velocity fluctuations, and for
the heat flux correlation coefficients, he had to con-
clude that many of the published data are in error
because they show correlation coefficients greater than
one.

In this work, the direct numerical simulation tech-
nique is used to calculate turbulent liquid metal flows
in plane channels and annuli. The method is based on a
finite difference formulation of the complete time
dependent three-dimensional mass, momentum, and
energy equations for the gross scale part of turbulence.
The small scales, which are not directly resolved by the
finite difference grid, are represented by special subgrid
scale models. Such a method was firstly applied to the
momentum transport in channels by Deardorff [5] for
inviscid flows, and by Schumann [6] for flows at finite
Reynolds numbers. This author developed a model
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which is also applicable to low Reynolds number flows
and which includes heat transports at different Prandtl
numbers [7, 8]. The subgrid scale model coefficients
are calculated by the theory of isotropic turbulence. In
the first part of this work the peculiarities of the model
and of the theory to calculate the coefficients, which
correspond to applications to low Prandtl numbers,
are discussed. Then the model is applied to the
simulation of liquid metal flows. The purpose of this
work is to predict statistical data for temperature
fluctuations in some exemplary flows. The results can
be used for the development of statistical turbulence
models. The numerical results, for example, confirm
the spectral theory of Lawn cited above.

2. NUMERICAL SIMULATION METHOD

In this Section a brief description of the basic
principles of the method of direct numerical simulation
and of the computer model used is given. More details
about the derivation and the numerical solution of the
basic equations are found in [7, 8].

2.1. Volume averaged basic equations

The method of direct numerical simulation of
turbulent flows is based on the complete three-
dimensional non-stationary equations for the con-
servation of mass, momentum and heat. For appli-
cation of finite difference schemes these basic equa-
tions are transformed to a finite difference form for the
mesh cell averaged variables Y (Y any quantity) by
formal integration over the volume ¥V = Ax; Ax, Ax; of
one mesh cell. When averaging partial space de-
rivatives the Gaussian theorem leads directly to finite
differences & jl}_’for surface averaged values 'Y, where j
denotes the normal of the respective mesh cell surface
JF. The resultant averaged equations for mass, mom-
entum and thermal energy read as follows (for sim-
plicity, Cartesian coordinates are used here; actually,
cylindrical coordinates are used in the computer
code):

8u; =0
8 o — 1 ou,
a—tui= —5juju,-—(3,-p+5j WE;;
i=123 (1)
0 v — 1 ey
E T= _5f uiT+5]~<P—e*a—xj>+Q.

The summation convention is used for repeated lower
indices. These equations are made dimensionless by

means of the channel width D, the friction velocity w*
averaged over both walls, the time scale t* = D/u_*, and
the heat flux temperature T* = q'w/(pcpE). Con-
sequently, the Reynolds number is defined as Re*
= ED/V, apd the Peclet number is defined as Pe*
= Re* Pr. Q is the specific volumetric heat source.
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In the TURBIT-2 computer code {7] applied here
the partial derivatives which still remain in equation
(1), and the quantities not defined on the staggered grid
used are approximated in a linear manner. For time
integration an explicit mixed Euler leap frog scheme is
used in combination with Galilean transformations of
the mean velocity and temperature fields to maximize
the permissible time step widths. The calculation of
the pressure field follows the well-known method of
solving a Poisson equation by means of the fast
Fourier transformation.

The geometries modeled in the computer program
are infinite plane channels and annuli with different
radius ratios R,/R,. The infinity is due to the per-
iodicity of the velocity and temperature fields in the
mean flow direction x, and spanwise direction x,. The
periodicity lengths X, = IMAx, and X, = JMAx,
(see Fig. 1) are prescribed via the corresponding
numbers of mesh cells IM and JM, and via the
respective grid widths Ax; and Ax,. Due to periodicity,
axial gradients in the temperature field cannot be
recorded easily. A possible transformation is given in
[7], but is not used here.

The wall conditions are mostly formulated exactly.
Important exceptions are the wall shear stress

1, = —1/Re* 36141/6x3
and the normal wall heat flux

G, = —1/Pe* 3T /ox,.

In turbulent channel flows with Pr > 0.7, both gra-
dients show strong changes near the wall which cannot
be resolved with the grids used. Therefore these wall
fluxes are approximated consistent with the universal
velocity and temperature profiles. The method ac-
counts for influences of the wall roughness, Reynolds
number, and grid resolution capabilities. For liquid
metal flows no wall functions need to be used for the
wall heat flux because of the large spatial extension of
the conductive sublayer, which is directly resolved by
the grids used. Thus, a valid approximation of the wall
heat flux in case of liquid metal flows is

R )

—— (T, -T 2
Pe* 0x, Pe*Ax3( ! W

q.=
where WT“, is the temperature in the grid cell adjacent to
the wall and T, is the wall temperature.

2.2. Subgrid scale heat flux model for liquid metals

2.2.1. Formulation of subgrid scale heat fluxes. The
basic equations (1) contain averaged products of
velocities and temperature. In a first step we split the
unknown terms by splitting the dependent variables in
alarge scale part Ty directly resolved by the grid and in
a subgrid scale part Y, which represents the unre-
solved fluctuating part of Y= 'Y + Y. This yields
these equations, which are still accurate:

HMT 24:3 - H
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j 7 j ! !
Wk = Uy u; + Uy
3)
— .
wT Ju—jJT + Ju}T’.
Only for the subgrid scale parts must model assump-
tions be introduced. The models used in the code
have been described, and extensively tested over a wide
range of Reynolds numbers, Prandtl numbers, ratios of
radii, and space dependent wall roughnesses [7-9].
Here emphasis is put on the discussion of the strong
influence of molecular conduction on the subgrid scale
heat flux model in case of liquid metal flows. The
model for such flows is the following:

T = —ias (T — (T ) (4a)
i=1273.
Ja, = Cr,/C;0F'E)2 (4b)

This means that we assume gradient diffusion pro-
portional to effective eddy conductivities ‘a, and to
local gradients of the temperature fluctuations. The
eddy conductivities are modeled by a kind of Prandtl-
energy-length-scale model. The length and energy
scales chosen account for the fact that the influence of
the model tends to become zero with increasing spatial
resolution. The characteristic length scale is /F/2, The
characteristic energy scale is the subgrid scale kinetic

energy E' within the area /F:
: 15—
E =2 ) )

This energy is also used in the momentum subgrid
scale model. It is calculated from an additional con-
servation equation which is solved simultaneousty
with equation (1).

2.2.2. Calculation of model coefficients. The coef-
ficient /Cy in equation (4b) is introduced to correct for
geometrical anisotropies of the grid. It depends only
on grid parameters and is of the order one; in case of
isotropic mesh cells, ’C; = 1. The coefficient dominat-
ing in our special application is Cy,. It has to be
determined so that the production of subgrid scale
temperature variances caused by this model

: A
production = Cu;T" 6, T (6)

is equal, in the statistical mean, to its subgrid scale

dissipation ";

dissipation =

—y
T

(o= oy = Gt T 6T ()

These equations are taken from a formally deduced
conservation equation for the subgrid scale tempera-
ture variances. The overbar " denotes linear

averaging over two neighbouring values in the j
direction. From equations (4), (6) and (7) one gets:
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Cordy — (o 8T 8T
Pe (8)
(CUFE <5,.’T' 8, Tyyr
The denominator has been split into two parts to
replace the triple correlations, which introduces a
correction factor y; of the order one (y, > 1).

We may assume that subgrid scale turbulence,
which is mostly associated with high wave numbers, is
nearly independent of boundary conditions etc. and
can therefore be regarded as locally isotropic. So, the
theory of isotropic turbulence as given, for example, in
[10] can be used to calculate all correlations contained
in equation (8) on the basis of the well-known Kolmo-
gorov spectrum for the kinetic energy of turbulence
E(k) and on the basis of the Batchelor spectrum for
twice the energy of the temperature fluctuations E(k):

E(k) =g <8>2/3 k—5/3
Er(k) = B <e> ™ P ery k™35,

For the constants in the spectra we use o = 1.5 and j
= 1.3 determined in a literature review.

An approximate formula to estimate Cr, on the
basis of equation (9) is given in [11]. The complete
theory to calculate all terms contained in equation (8),
and similarly for /Cy, is very extensive and complicated
[7]. Here we must use the complete theory, because all
geometric details of the anisotropic grid and molecular
conduction must be taken into account. In the follow-
ing result the functions f;(Ax;), which are of no special
interest here, are of the order one and depend only on
grid parameters:

Con = 1 - ﬁfl(Axi)PE*-l Y49 <£>—1/3
"o yrBal? f(Ax;)

The dissipation ¢; of temperature variances has can-
celled out. The second terms of the numerators of
equations (8) and (10) represent the dissipation in the
temperature field resolved directly. These terms are
important only in those cases in which the Peclet
number and the mesh volume are small. This means
that in cases in which the turbulent temperature
fluctuations are almost totally contained in the large-
scale structure resolved directly, the dissipation (¢} is
an additional unknown. A useful approximation for
turbulent channel flow purposes is deduced from the
assumption of equality of production = — {uju}
8¢u,>/0x,, and dissipation of kinetic energy. Appli-
cation of the Prandtl mixing length model and uni-
versal logarithmic velocity profile furnishes:

Cry=

©®)

. (10)

o<uy )
0x5

3

x|

We use x = 0.4 for the Karman constant. Equation
(11) makes the subgrid scale coefficient Cr, [equation
(10)] dependent on the wall distance y. A numerical
evaluation of equations (9)—(11) is shown in Fig. 2 for
an equidistant Cartesian grid with Ax, = Ax, = 1/8

ey = (ky)? (11)
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plane channel flow (K)

*
X X;
53 X2 )
.4X3
u; :ul
<u>
Dl < U3

annular flow (Z)

FiG. 1. Channel geometries under consideration. In both
channels the time mean flow vector {u) points in the x;-
direction.

and Ax; = 1/16, later denoted grid K7. In accordance
with the higher turbulent temperature fluctuations
near the wall, and the correspondingly larger extension
of the spectra of the temperature fluctuations to higher
wave numbers, the model shows increasing values of
Cr, for decreasing wall distance and for increasing
Prandtl number.

The correction factor y; included in equation (8)
must be determined empirically. In a sensitivity study
it was tried in [7, 8] to adjust y; by using the coarse K7
grid for the simulation of a high-Reynolds number
flow with Pr = 0.7, this is a case in which the subgrid
scale heat flux model should be important. Neverthe-
less, yr showed very weak influences only. The high
insensitivity to changes in y; is even more pronounced
for lower Prandtl numbers. In Fig. 3, some results for
five simulations of the flow of liquid sodium with
different y; are shown. Theoretically, one expects yr
> 1. For this range, almost no influence can be
detected, although y; extends over two orders of
magnitude and the coefficients Cr, are equal to zero
only in the inner third of the channel. In order to use an
unchanged turbulent subgrid-scale Prandtl number,
the same value y; = 1.4 was chosen for all Prandtl
numbers as in the subgrid scale model for the momen-
tum fluxes.

3. CASE SPECIFICATIONS AND
INITIAL CONDITIONS
Several calculations with different Reynolds num-
bers chosen at random were carried out for a plane
channel and an annulus (Table 1) with the Prandtl
number of liquid sodium under reactor conditions (Pr
= 0.007). The resulting Reynolds number Re is related
to Re* prescribed, the channel average of the calcu-
lated mean velocity "Cu, », and the friction coefficient

¢t
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0.20-
Cr2
015/
010 ¢ 1cr, Re*= 1000
2Crpg Re¥= 1000
0051 3Crq Re*=10000
4Cryg Re*: 10000
0 Pr
=3 g b e

FiG. 2 (;alculated coefficient Cr, (yr = 1.0) for grid K7 as a function of the Prandtl number. Parameters are
the friction Reynolds number and the mesh index K in the x;-direction [y(K = 1) = 0.0313 = mesh adjacent

to the wall, y(K = 8) = 0.469 =

Re* = Re/(2°Cu; ) = Re/2./(c,/8). (12)
The calculations of the flow of liquid mercury in an
annulus, Pr = 0.0214, refer to the experiments by
Dwyer et al. [12]. The calculations in air, Pr = 0.7 (1),
have been added to show the steadiness of numerical
results.

The thermal boundary conditions for the annuli are
adiabatic outer walls and prescribed uniform wall heat
fluxes at the heated inner walls. The plane channel
flows of sodium are heated by volumetric heat sources
within the fluid and cooled at the walls by prescribed
uniform wall temperatures. These boundary con-
ditions make the temperature profiles in the plane
channels directly comparable to the profiles in uni-
formly cooled or heated pipes. The plane channel flow
of air is cooled at wall w1 by a prescribed constant wall
temperature, and heated at wall w2 by a constant heat
flux.

To start the numerical time integration of equations
(1), nearly arbitrary initial data for the three velocity
components and for the temperature can be used;
however, in order to shorten the computer time
necessary to reach a fully developed flow we use the
universal logarithmic laws for the mean of 4, and T
and zero for the mean of u, and u,. A pseudo-random
number generator is used to superimpose upon these
mean values random fluctuations with amplitudes
corresponding to the expected RMS-value profiles.

mesh adjacent to the center].

Better initial data have been deduced for the case with
Pe = 350, which uses the unchanged numerical results

for the velocity fields of the case with Pe = 35 500.

The parameters of the finite difference grids used are
listed in Table 2. The Cartesian grids K use 2048 or
8192 mesh cells; the cylindrical grids Z use 4096 or
16384 mesh cells. The periodicity lengths ® chosen for
the circumferential direction in the annuli allow to
record one quarter or half of the channel, which seems
to be appropriate for the radius ratios under con-
sideration [7]. The assignment to the cases of the given
equidistant, but not equally sided, grids is shown in
Table 1.

For the parameters of each case the radial profiles of
all coefficients of the total subgrid scale model must be
calculated. For example, the complete theory in-
dicated in equations (8)—(11) leads to the results for
Cr, listed in Table 3. For the three cases with the
lowest Peclet numbers no subgrid scale heat flux
model is necessary. As was to be expected from Fig. 2,
increasing Peclet numbers make C;, become non-
zero, predominately near the walls, in annuli, es-
pecially near the outer walls. For the two highest
Peclet numbers the subgrid scale heat flux coefficient is
approximately constant all over the channels. For
these two cases the complete subgrid scale heat flux
model has been used as given in [7, 8], whereas the
simpler model given in equation (4) has been used for
all liquid metal flows.

Table 1. Case specifications. The grid specifications follow Table 2

Thermal boundary

Pr Re Pe Ri/R, Grid conditions 0
0.007 46000 322 025 79 Gur =1, 4oy =0 0
50000 350 1.0 K22 i =Tur =0 2

100000 700 025 722 Gor=1, dua =0 0

280000 1960 10 K7 Ty = Tos =0 2

00214 100000 2140 0479 722 Gur =1, oy =0 0
145 300 310 0479 722 Gor =1, Guy =0 0

0.7 50000 35000 025 222 Gor=1 Gos=0 0
0.71 50000 35500 10 K22 =0, Gu=~1 0
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55-

K% .

VE‘ |25 min.
T

Re = 280000
Pr = 0.007

T T T T 1 rrrrrt

T 100.

* F1G. 3. Insensitivity of temperature results to changes of correction factor y, with grid K7; max. and min. are
taken from the lateral profiles.

4. NUMERICAL RESULTS

Typical computer times for an IBM 370/168 and the
numbers of time steps NT needed to reach fully
developed flow and an additional time interval At,, for
evaluation are given for each grid in Table 2 and for
each case in Table 4. The channel lengths I covered are
always greater than 50 channel widths, which is
sufficient to reach fully developed flow.

4.1. Phenomenological results

Contour-line plots of the resolved instantaneous
turbulent temperature fluctuations are shown in Fig. 4
for different annular flows with different molecular
Prandtl numbers. The isolines show larger tempera-
ture fluctuations near the lower heated wall than near
the upper adiabatic wall. With increasing Prandtl
number the amplitude of the fluctuations increases,
and the location of its maximum moves closer to the
wall. The patterns show a predominant inclination
from the walls in the Z-direction of the mean velocity
to the center of the channel. The spatial extension of
these structures decreases with increasing Prandtl
number. In case of liquid sodium, the dominant
structures are much more spatially extended than the
typical grid width.

The same behaviour can be detected in cross-
sections perpendicular to the mean flow direction (Fig.
5). In addition, these sections seem to show mainly
large scale structures in the centre of the channels,
whereas the scales are smaller near the heated walls.
Thus we find temperature fluctuations with higher
wave numbers in the main productive region near the
heated wall, and with lower wave numbers in the inner
part of the channel. This qualitative result agrees with
the importance of the temperature subgrid scale model
as given by the theoretical result for Cr, in Table 3.

4.2. Profiles of temperature statistics

For quantitative evaluation of the time dependent
numerical results mean values are taken as averages
over planes parallel to the walls. In addition, these
mean values have been averaged over 21 to 43 different
time steps equidistantly distributed within the final
time intervals At,, (Table 4). In the same table some
results are included which were calculated from the
velocity fields and used for normalization purposes.
The calculated velocity and pressure fields are not
verified in this work. Those results, which do not
depend on the molecular Prandtl number, were ve-
rified in [7-9].

Table 2. Grid specifications and typical computing times. IM, JM and KM
denote the number of mesh cells in the three space directions

Grid specifications K7 K22 79 722
IM (x,2) 16 32 16 32
JM (x5, 0) 8 i6 16 32
KM (x3,R) 16 16 16 16
X, 2 32 2 32
X, ® 1 2 n/2 n
Number of time steps 2690 1875 3080 2625
CPU-time, IBM 370/168 47 min 2.5h 2h 7h
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Table 3. Results for C5,(K)for mesh cell No. K = 1near the wall w;,for K = 8 near the center of the channel, and for
K = KM near the wall w,. The calculated values are divided by y; = 1.4

Cry =0 for
Pr Pe Grid Cr2(1) Cr2(8) Cra(KM) R — Ry)/(R; — Ry)
0.007 322 z9 0.0 0.0 0.0 0-1
350 K22 0.0 0.0 0.0 0-1
700 z22 0.0 0.0 0.0 0-1
1960 K7 0.067 00 0.067 0.31-0.69
0.0214 2140 Z22 0.065 0.0 0.079 0.44-0.5
3110 222 0.081 0.030 0.090 —
0.7 35000 222 0.118 0.118 0.123 —
0.71 35500 K22 0.123 0.118 0.123 —

Table 4. Time intervals ¢ with N T time steps, resultant channel mean velocities, covered channel lengths /, resultant wall shear stresses,
distances y from the wall w, of zero turbulent shear stress, friction factors ¢y, and number of time steps AN T, within the final time
intervals At,, used for time averaging

* *
Pe ¢ Nt 1 ul £ L, w=0 ¢ ANT,, At,,
u* D u* u*
322 316 3080 1919 606 1063 0984 0.376 00217 28 1.16
350 §24% 425 1936 1595 10 10 0.5 00213 23 202
700 357 3875 2093 747 1072 0981 0.376 0.0183 83 1.25
1960 697 2600 2325 1621 10 10 0.5 00148 21 269
2140 521 2450 2088 1088 1037 0982 0.432 0.0183 2 234
310 204 9450 2243 4576 1049 0976 0.448 00159 30 324
35000 451 2625 1961 884 1071 0981 0.376 0.0208 27 171
35500 400 1875 1947 779 10 10 05 00211 2 1.56

*Restarted from case Pe = 35500 at ¢t = 4.0 after initializing a new temperature field.

Cross stream profiles of temperature statistics eva-
luated from the plane channel flow simulations of
liquid sodium are given in Fig. 6. All profiles are more
or less symmetric to the center of the channel. The
typical standard deviation tsd relative to local values is
between 0.5 and 7%, for the temperature RMS values
and heat fluxes evaluated directly, and between 8 and
129 for the heat flux correlation coefficients and the
eddy diffusivities for heat which by definition both are
composed of different single results. The nearly para-
bolic temperature profiles are typical of conduction
controlled flows. With increasing Reynolds or Peclet
numbers the importance of turbulence increases. Ac-
cordingly, the RMS values of the turbulent tempera-
ture fluctuations and the turbulent heat flux {u3T")
become higher and the positions of the peaks move
closer to the wall. The turbulent heat flux correlation
coefficient shows nearly constant values in the outer
parts of the channel with the higher Peclet number. In
case of the lower Peclet number, the absolute value of
the correlation coefficient increases as the walls are
approached. The eddy diffusivity for heat increases
with increasing Reynolds number. The maximum
values, normalized by the thermal diffusivity a, confirm
the very low contribution of the turbulent heat flux to
the total flux in case of the lower Peclet number flow.
Thus, both cases may be attributed to the transition
range from molecular to turbulent heat transfer.

The results of the evaluation of the annular flow
simulations are presented in Fig. 7. All profiles ap-
proach zero near the adiabatic outer wall. The radial
heat flux correlation coefficients behave similarly, but
there seems to be an indication of two approximately
constant regions with different heights in the inner and
outer halves of the channels. Again, the correlation
coefficients for the lower Peclet numbers show a
pronounced increase near the heated wall. The eddy
diffusivity profiles are obviously not affected by the
special thermal boundary conditions. The profiles
show higher peaks near the outer wall, especially in
case of the small ratios of radii of both low-Peclet
number flows. The high-Peclet number profiles are not
very different. It may be concluded that these results
are near the limiting profile for high-Reynolds number
flows of liquid mercury.

In addition to these evaluations of the numerical
time and space dependent results a lot of evaluations of
other correlations are possible, chiefly those mainly
governed by the resolved large-scale structure of
turbulence. Some examples included in [7] are the
temperature—temperature, the energy-temperature,
and the pressure-temperature cross correlations. A
complete plot output from the computer code includ-
ing velocity and pressure statistics is given in [13] for
the annular flow with Pe = 700.
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T'(t=3572,9=1/8) Re 100 000, Pr = 0.007,

Ry/Rp= 0.25, A =0075

FiG. 4. Contour line plots of instantaneous resolved temperature fluctuations T’ =

T—(T) for annular

flows of air, mercury, and liquid sodium. Sections along the mean flow direction Z. A = contour line
increment. The dashed lines correspond to negative values.

5. DISCUSSION OF NUMERICAL RESULTS

To obtain an integral judgement on the simulated
temperature fields we compare the evaluated Nusselt
numbers in Fig. 8 with some empirical correlations
taken from literature [14~18]. The numerical data of
the plane channels, which have two non-adiabatic
walls, agree with the respective formulae by Gréber
[14] and Dwyer [15]. For the annular flows with
adiabatic outer walls, the empirical data scatter widely,
both as a function of the molecular Prandtl number
and the ratio of radii. The correlation by Barthels [ 18]
follows the numerical results for liquid mercury. The
numerical results for liquid sodium flows, valid for a
radius ratio of 0.25, are below most results of the
correlations. The only curve which follows all numeri-
cal annular flow results, but gives slightly lower

Nusselt numbers, is the curve by Griber for a plane
channel with one adiabatic wall. The large discrepan-
cies between the empirical curves seem to be due to the
problems in formulating radial eddy diffusivity profiles
for annular channel flows. In plane channel flows no
comparable difficulties appear, because the eddy diffu-
sivity and eddy conductivity profiles may be approxi-
mated by using the direct analogy to pipe flows, which
have been investigated more thoroughly.

A more detailed comparison of the numerical results
with temperature profiles measured in an annular
channel by Dwyer et al. [12] is made in Fig. 9. The
temperature profiles are nearly identical. Due to the
somewhat higher Reynolds number, the numerical
results for the eddy conductivity profiles are also
somewhat higher than the original and the smoothed
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data calculated from the measured temperature profile
by Dwyer et al. The typical standard deviation in-
dicates comparable uncertainties in the numerical and
the experimental results.

Some further results for the eddy conductivity have
been plotted over the Peclet number in Fig. 10. In the
log-log-presentation selected the plane channel data
follow a single straight line, independent on the
Reynolds and Prandtl numbers. The line is parallel to
the line through the experimental pipe data found by
Fuchs [19]. The distance between both lines
corresponds to a difference in Peclet number by
approximately a factor of two. The difference arises
from the different numbers of thermal boundary layers
in both channels. The data of the annular flows follow
neither line: The eddy conductivity results for the
mercury flows with R,/R, = 0.479, which almost ex-
actly follow the smoothed experimental data by Dwyer
et al. [12], show a flatter increase with increasing
Peclet number than the plane channel data, whereas
the sodium flows with R;/R, = 0.25 increase some-
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what more steeply. All these results indicate the rather
complicated influence on the eddy conductivity of the
Reynolds number, Prandtl number, and of the radius
ratio.

Also the advanced statistical turbulence models
using additional transport equations for some turbul-
ence quantities can be supported. By way of example,
the peaks of the radial temperature RMS value profiles
are plotted over the Peclet number in Fig. 11. The
qualitative behaviour is largely comparable to that of
the eddy conductivity. One important difference be-
comes evident from the numerical air flow results and
from the experimental pipe data for air included in the
figure. For constant Prandtl numbers the RMS values
at large Peclet numbers are shown to depend not on
the Reynolds number or on the Peclet number. At
medium and low Peclet numbers the RMS-values
seem to depend mainly on the Peclet number. Further
influences arise from the radius ratio and from the
thermal boundary conditions.

The experimental results for pipe flows [19-24]
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T'(t=3572, x,=04) Re=100000, Pr=0.007,

Ry/Ry= 0.25, A = 0075

FiG. 5. Contour line plots of instantaneous resolved temperature fluctuations for annular flows of mercury
and liquid sodium. Sections perpendicular to the mean flow direction.
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F1G. 6. Cross-stream profiles of temperature statistics for plane channel flows of liquid sodium. (a) Time
mean temperatures normalized by AT, = T}, — T}, ; (b) resolved RMS-temperature values and (c)
cross-stream turbulent heat fluxes; (d) heat flux correlation coefficients; (¢} eddy diffusivities for heat.
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FiG. 7. Radial profiles of temperature statistics for annular flows of liquid sodium and liquid mercury. (a)
Time mean temperatures; (b) resolved RMS temperature values and (c) cross-stream turbulent heat fluxes;
(d) heat flux correlation coefficients; (e) eddy diffusivities for heat.
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Nu Ry/R2 heated walls Pr
1 1 Grdber 1970 1. 2
g 2 Dwyer 1965 1 2
3 Grdber 1970 1. 1
1 4 Kays,Leung 1963 .2 1 01
B 5 Kays,Leung 1963 5 1 .03
6 Dwyer 1963 .25 1
102 7 Dwyer 1963 479 1 3
. 8 Barthels 1967 .25 1
] 9 Barthels 1967 479 1
p o annulus
- a plane channel }TURBIT 2 1%
Y7
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1J2 T T T T TTT l1l03 T T T 17T Tl]1104 T T T T TTT I1I05

FiG. 8. Nusselt numbers Nu = (§eony + Gcond)/deona €valuated from numerical results and from empirical
formulations. °(Pr,> = 1has been used for plotting some of the empirical curves. The Prandtl numbers of the
numerical results are &, ©, Pr =0.007; O, Pr = 0.0214; A, @, Pr = 0.7(1).
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F1G. 9. Temperature and 'eddy conductivity profiles evaluated from the numerical simulation, case Pe
= 3110, compared to measured and deduced annular flow data by Dwyer et al. [12].
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F1G. 10. Influence of Peclet number on the eddy conductivity normalized by the thermal diffusivity.

10 Y Fuchs 1973 Na
% T x Bobkov et al 1967 Hg
+ Bobkov et al 1967 Pb
] > Rust, Sesonske 1966 Hg
) ~< Hochreiter, Sesonske 1974 Hg
) A Tanimoto,Hanratty 1963 air
4 Lawn, White 1972 air
o annulus
& plane channel }TURB” 2
104
0. A A— — —
102 103 104 Pe

FiG. 11. Influence of Peclet number on the peaks of the radial temperature RMS-value profiles. All
experimental data by [19-24] are for pipes. T* used for normalization of Fuchs’ data has been deduced from
his data for Tand T*. For the symbols for the numerical results, see Fig. 8.
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included in Fig. 11 scatter widely. This has also been
found in the review by Lawn [4] for the RMS-values at
a fixed point in the channel. The main reason for the
scatter of the experimental data seems to be the limited
frequency range of the sensors and the electronic
equipment used [13]: For the Prandtl number of air,
for example, the differences caused by slow sensors can
be some 10 or 20% [8]. For the Prandtl number of
liquid sodium the pipe data by Bunschi [25] permit the
conclusion that the temperature RMS-values found by
Fuchs [19] should be higher at least by 30 %, due to the
high frequency cutoff used. Another open problem is
the low frequency cutoff used in these experiments.
The discussion of these uncertainties of experimen-
tal temperature fluctuation results indicates why Lawn
[4] was unable to verify his spectral theory in calculat-
ing the heat flux correlation coefficient. The cor-
responding experimental results scatter widely, be-
cause they contain the uncertain RMS temperature
fluctuations. While Lawn cites values for the cor-
relation coefficient (at y = 0.25) between 0.15 and 2.3,
the numerical data at the position of the maximum
RMS temperature values, taken from Figs. 6 and 7 and
gathered in Fig. 12, are around 0.45. The numerical
results show a uniform decrease for each Prandtl
number with increasing Peclet number. This decrease
is mainly due to volume averaging of the basic
equations [equation (1)] over finite grid volumes: the
sharp peak of the heat flux correlation coefficient very
close to the wall, close to the outer edge of the
conducting sublayer is not resolved by the grids used
for air flows, but is partly resolved for the liquid metal
flows with small Peclet numbers (Figs. 6 and 7). The
correlation coefficients react even less sensitively to
changes in the Peclet number in the inner parts of the
channels. Thus, the numerical data confirm the results
of Lawn’s theory that the heat flux correlation coef-

GUNTHER GROTZBACH

ficient is, if at all, a weak function of the Peclet number,
except for the very low Peclet number cases with &y/a
< 1 for which the convective turbulent heat flux is
insignificant compared with the pure conductive heat
flux.

6. CONCLUSIONS

The method of direct numerical simulation was
applied in calculating turbulent liquid metal flows
together with a theory to compute all coefficients of the
subgrid scale models. The numerical results for the
temperature fields react very insensitively to changes
in the coefficients for the subgrid scale heat flux model
determined theoretically. The temperature fluctuation
fields resulting from the low Peclet number simu-
lations do not depend on any coefficients in the
temperature equations ; qualitatively, the spatial struc-
tures in these fields follow the tendencies of the results
for higher Peclet numbers, for which the subgrid scale
heat flux model is relevant. The Nusselt numbers in
plane channel flows, and some temperature and eddy
conductivity profiles in annular flows, agree with
published experimental data. From this we conclude
that the theory of calculating subgrid scele coefficients
furnishes adequate results over the whole range of
Peclet numbers under consideration.

The turbulent heat flux data deduced from the
numerical results indicate complex dependences on the
Reynolds number, the Prandtl number, thermal boun-
dary conditions and on the radius ratio. The large
scatter of the empirical correlations for the Nusselt
number in annular flows is mainly due to problems in
formulating appropriate eddy conductivity profiles
accounting for all cited parameters. The deduction of
reasonable eddy conductivities or turbulent Prandtl
numbers still remains an open problem for all liquid
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V<uéz> V<T,2> ¥ max.
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" \
041
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F1G. 12. Dependence of resolved radial heat flux correlation coefficient on the Peclet number at position y,,.,
of the maximum of the RMS temperature values. Lines connect numerical results for cases with equal Prandtl
numbers and radius ratios (for identification, see Fig. 8 and Table 1).



Turbulent temperature fluctuations in liquid metals

metal flows in annuli and other complicated channels.
The eddy conductivity profiles for liquid metal annular
flows derived numerically in this work are the first data
in the literature to be determined directly. These
results can partly support the development of models
for the turbulent heat flux.

Existing statistical data on turbulent temperature
fluctuations in liquid metal flows show large un-
certainties. The main reason is the limited time re-
solution capability in most experiments. The numeri-
cal results for the RMS temperature fluctuations are
within the range of experimental data; for low Peclet
numbers, they show qualitatively comparable func-
tional dependence on Reynolds number, Prandtl
number, and radius ratio as the eddy conductivity. The
radial heat flux correlation coefficient evaluated for all
cases is close to most of the data published for air
flows; it is a very weak function of the Peclet number.
Thus, these numerical results confirm Lawn’s theory.
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SIMULATION NUMERIQUE DES FLUCTUATIONS TURBULENTES DE TEMPERATURE
DANS LES METAUX LIQUIDES

Résumé — On utilise la méthode de simulation numérique directe pour étudier les fluctuations de
température dans les écoulements de métal liquide pleinement développés. Des modéles a échelle de sous-
grille, utilisant une équation de transport, prennent en compte la turbulence non résolue par une grille aux
différences finies. Un modéle spécial de flux de chaleur a sous-grille, pour les métaux liquides, est déduit avec
une méthode de calcul des coefficients du modéle. Aux trés petits nombres de Péclet, les températures

deviennent indépendantes des paramétres du modéle.

Des résultats numériques pour le nombre Nusselt dans les canaux plats et pour les profils radiaux de
température et de diffusivité turbulente dans les espaces annulaires s'accordent avec des données publiées.
Les nombres de Nusselt déterminés numériquement pour les espaces annulaires indiquent que plusieurs
formules empiriques surestiment I'influence du rapport des rayons. Les résultats numériques pour la
conductivité turbulente peuvent étre utilisés pour réduire ces problémes. Les propriétés statistiques des
fluctuations de température simulées sont dans la bande de dispersion des données expérimentales. Les
résultats numériques confirment la théorie de Lawn en donnant des coefficients de corrélation de flux de

chaleur raisonnables et qui dépendent seulement faiblement du probléme des paramétres.
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NUMERISCHE SIMULATION TURBULENTER TEMPERATURSCHWANKUNGEN
IN FLUSSIGMETALLEN

Zusammenfassung—Die Methode der direkten numerischen Simulation wird zur Untersuchung von
Temperaturschwankungen in voll entwickelten turbulenten Fliissigmetallstrémungen benutzt. Mit
Feinstrukturmodellen, fiir die eine zusdtzliche Transportgleichung gelést wird, werden die nicht von den
Maschennetzen  aufgelosten  Turbulenzanteile  beriicksichtigt. Die  Koeffizienten . des fiir
Fliissigmetallstromungen vereinfachten Temperaturfeinstrukturmodells werden theoretisch bestimmt. Bei
kleinen Peclet-Zahlen werden die berechneten Temperaturfelder unabhingig von Modell parametern.

Die numerisch bestimmten Nusselt-Zahlen fiir Plattenkaniile, und radialen Profile der Temperatur und
der turbulenten WiirmeaustauschgroBe fiir Ringspalte stimmen mit veroffentlichten Daten fiir die Fluide
Natrium und Quecksilber iiberein. Die numerisch bestimmten Nusselt-Zahlen fiir Ringspalte deuten darauf
hin, daB viele empirische Beziehungen den EinfluBl des Radienverhiltnisses iiberschitzen. Die berechneten
Profile der turbulenten WiarmeaustauschgroBe konnen zur Beseitigung dieses Problems benutzt werden.
Statistische Eigenschaften der simulierten Temperaturfluktuationen befinden sich innerhalb der
Streubdnder  experimenteller Daten. Die  numerischen  Ergebnisse liefern  realistische
Wirmestromkorrelationskoeffizienten, die zudem nur schwach von den Problemparametern abhingen ; sie

bestatigen damit die Theorie von Lawn.

YUCJIEHHOE MOJEJIIMPOBAHHE TYPBYJIEHTHBIX NYJIbCALIUNA TEMITEPATYPbI
B XUAKHUX METAJIJIAX

Ansoraums — Jlns uccnenoBanus nyabCalMi TEMNEPATYPhl PH NMOJHOCTHIO Pa3BUTOM TYpOYJIEHTHOM
TEYEHHN XHAKHX METAJUIOB MCMOJIL30BAH METOM MPAMOTO YHCIEHHOr0 MOZENUpoBaHus. TTockoabky
AN pelueHHsi NPOGIEMbl U3BECTHBIE MOACETOYHBIE MOJE/H, OCHOBAHHbIE Ha OJHOM yDaBHEHHH nepe-
HOCa, HENOCTAaTOYHBI, aBTOPOM MPEMJIOXEHBl CMEUHaibHas MOACETOYHAS MOJENb TEIUIONEPEHOCa B
KHIKHX METaJIaXx H METO BBIYUCICHHA MOAENBHEIX KO3(duLueHTOB. [IpH OYeHb ManbIX 3HAYCHHAX
uucna [lexne TeMnepaTypa MepecTaeT 3aBHCETb OT NAapaMETPOB MOJCAH. Pe3ylbTaThl YHCIIEHHBIX
pacyeroB umcna HyccenbTa Ans niockMx KaHanos, a Takke Npoduned paauaibHON TeMIEpaTypel H
BMXPEBOH TEMJIONPOBOAHOCTH B KOJBIUEBBIX KaHANAaX COIJIACYIOTCH ¢ OMyOJMKOBAHHBIMH NaHHBLIMH.
3navenns uucna HyccenbTa, paccunTaHHbIE YUCIEHHBIM METOAOM U KOJIBLEBBIX KaHAOB, CBHAETE/b-
CTBYIOT O TOM, YTO MHOTHE M3 JMIHMPHYECKHX COOTHOIICHMH NEPEOLEHHBAIOT pOJb OTHOLICHHS
pamuycos. JaHHble YMCIEHHBIX PacyeTOB Npodusieii BUXPEBO TEMIONPOBOAHOCTH MOTYT HCMOJb30-
BaThCs /1 60siee KOPPEKTHOTO yeTa BJIHAHHSA KAHHOrO napaMeTpa. CTATHCTHYECKHE XAaPaKTEPHCTHKH
CMOJIEJIMPOBAHHBIX MY/IbCAUUA TEMNEPATYPLl HE BBLIXOAAT 3a MONOCY pa3bpoca IKCIEPHMEHTANbHbIX
3HaueHHA. JJaHHBIE YMCNEHHBIX PaCYeTOB MOATBEPXKOAIOT Pe3YAbTATHI NPETIOKEHHOrO JIOyHOM MO-
JE/LHOTO KOPPEJIALUHOHHOTO ONUCAHMS TEIJIOMEPEHOCa B KUIKHX METa/uiax, AAlOLUME NpPHEMJIEMbIC
3HauYeHHA KO3(DPHUMEHTOB KOPPEAsUHMi A3 TENJIOBOTO NOTOKA.



