Free-of-charge online course "Computational fluid dynamics with OpenFOAM"

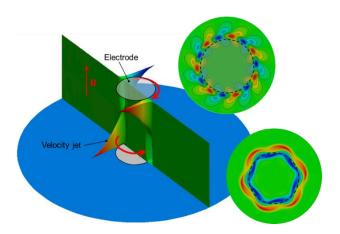
The format of the course allows a very flexible participation!

The course consists of four parts, each extending over two days. During <u>day1</u>, participants receive videos of the lectures, slides and exercises. During <u>day2</u>, teachers are available at any time for a one-to-one discussion via Zoom meeting to solve issues related to exercises and answer questions. The course will be held in English.

Objective. The purpose of the course is to acquire the knowledge and practical skills necessary to use the software OpenFOAM.

You will learn to

- set up and run cases in OpenFoam (create geometry and mesh, define boundary and initial conditions)
- use different mesh generation tools (structured and unstructured grids)
- simulate stationary, transient and turbulent flows
- analyze a log file (output file) and residuals to evaluate solution convergence
- post-process the solution: Paraview, extract solution data,...
- implement new equations and boundary conditions


Course organization. Participants undertake exercises using a virtual machine accessed via a ssh connection from participant's PCs, applicable to all operating systems.

Target audience. The course is suitable for beginners and users seeking to broaden their basic knowledge of OpenFoam, particularly in programming, solving different types of flow problems, generating suitable meshes. No prior knowledge of OpenFOAM, C++ or Linux is required, but a basic knowledge of Linux and C++ is beneficial.

Please note: during <u>day2</u> of each part of the course, a short individual discussion with participants is foreseen in order to discuss the progresses of the work. This is a requirement to get the final certificate and the full documentation of the course.

In order to register to the course please fill in the application form! Send it to dunja.rosanowitsch@kit.edu and chiara.mistrangelo@kit.edu.

Schedule of the course

Day1-P1

Mo 10.10	Tue 11.10 9 ³⁰ - 14 ⁰⁰	Wed 12.10	Thu 13.10 9 ³⁰ - 14 ⁰⁰	Fri 14.10
Introduction, what is OpenFoam, Linux commands Overview of OpenFOAM Documentation, code structure, directory organization of a case (fundamentals of case structure) Finite volume method First OpenFOAM exercise Lid-driven cavity (setting a case, boundary and initial conditions, solver and control parameters) Check list for cavity (what we learnt!)	Zoom Meeting for questions and discussion	Introduction to 3D laminar flow in a circular pipe Meshing tools: blockMesh + m4-script Mesh generation with parameters Snappy Hex Mesh (SHM) Exercises Sludy of various BCs Post-processing Generation of geometry and mesh (pipe) with m4 parametrization Example for SHM Check lists (what we learnt!)	Zoom Meeting for questions and discussion	Open issues/ questions can be sent per email
Part1		Part2		

Day1-P2

Day2-P2

Day2-P1

Mo 17.10	Tue 18.10 9 ³⁰ - 14 ⁰⁰	Wed 19.10	Thu 20.10 9 ³⁰ - 14 ⁰⁰	Fri 21.10
Meshing tools: o Adaptive mesh refinement (AMR) o External tools and conversion to OF format Kármán vortex street (theory) functionObjects (e.g. time averaging, calculation of forces) Exercises Kármán vortex street (transient flow) o Structured mesh (blockMesh) o AMR → Comparison of results with two grid generation methods Check list for Kármán vortex street (what we learnt!)	Zoom Meeting for questions and discussion	Programming Implementing the temperature equation in a solver Implementing a new time-dependent boundary condition Exercises Application of new BC and solver with T-equation Turbulent flow (theory and exercises) Summary Best practice guidelines	Zoom Meeting for questions and discussion	Further questions can be sent per email
Part3		Part4 ———		
Day1-P3	Day2-P3	Day1-P4	Day2-P4	