

Institut für Kern- und Energietechnik

Leiter: Prof. Dr.-Ing. Thomas Schulenberg

Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen

Bearbeiter/in: Kuhn/ho

Datum: 05.06.2013

Einladung zum IKET-Kolloquium

<u>Zeit:</u> Dienstag, 18. Juni 2013, 15.00 Uhr

Ort: Kolloquiumsraum des IKET, Campus Nord, Bau 419, Raum 104

Referent: Prof. Dr. Martin Wendland, Universität für Bodenkultur, Institut für Ver-

fahrens- und Energietechnik, Wien, Österreich

Titel: Thermodynamische Bewertung von ORC-Prozessen

Zusammenfassung:

Zur Verstromung von Nieder- und Mitteltemperaturwärme aus Geo- und Solarthermie oder Abwärme benötigt man einfache, robuste und preiswerte Kleinkraftwerke mit möglichst hohem Wirkungsgrad, d.h. möglichst nahe am Carnot-Wirkungsgrad. Dazu bieten sich der organische Clausius-Rankine-Prozess (ORC) an. Alternativen sind der Dreiecks-Prozess (Trilateral Cycle, TLC) und der Kalina-Prozess. Der Vorteil des ORC-Prozesses ist seine Ähnlichkeit zum Carnot-Prozess, nachteilig aber der Verlauf der Temperaturkurven in den Wärmetauschern, d.h. vor allem die Lage des Pinch-Points im Kessel. Demgegenüber verlaufen beim TLC-Prozess die Abkühlungs- und der Erwärmungskurven im Kessel sehr günstig. Der Kalina-Prozess erreicht ähnliches durch Verwendung eines Gemisches als Arbeitsmedium. Wird beim ORC-Prozess ein überkritisches Gas oder ein Gemisch als Arbeitsmedium verwendet, erhält man Verläufe, die dem TLC- oder dem Kalina-Prozess ähneln, ohne deren technische Probleme zu übernehmen. Bei einer thermodynamischen Bewertung des ORC-Prozesses mit den unterschiedlichsten Arbeitsmedien ist also neben dem thermischen Wirkungsgrad des Kreisprozesses selbst auch Wärmeübertragung in Kessel und Kondensator zu berücksichtigen.

gez. T. Schulenberg

Alle auswärtigen Besucher des Kolloquiums werden gebeten, ihren gültigen Personalausweis oder Reisepass mitzubringen.