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Abstract

A finite difference scheme for direct numerical simulation of turbulent velocity, pressure,
and temperature fields in plane channels and annuli is described. The fluid is incompressible
and has constant density and diffusivities. The method is an extended and revised version of
an earlier one. It now includes simultaneous simulation of the temperature field and employs
a revised subgrid scale model which has been extended to allow for moderately high Reynolds
numbers (Re > 10,000) and poorly resolving grids. The purpose of this paper is to report

and demonstrate the improved capabilities of the method.

Nomenclature
a Dimensionless conductivity T Temperature
(= 1/Pe,) u; Velocity components
ay SGS turbulent conductivity , Bulk velocity
c SGS model coefficient Ug Wall shear-stress velocity
D Distance between the walls X; Coordinates, see Fig. 1
iF Grid cell surface with normal in v Kinematic viscosity (= 1/Re;)
xj-direction o Correction factor
IM, JM, KM Number of grid cell in Tw Wall shear stress
X1- X2, X3-direction y Any dimensionfull quantity y
h Grid spacing (Ax, - Ax, - Axz) Y3 v Fluctuating part
b4 Kinematic pressure N2 Time mean value
4w Wall heat flux Uy Grid volume mean value ’
R;{/R, Inner/outer radius iy Surface mean value (taken over /F)
t Time rms Root time mean square value
Introduction

Direct numerical simulation of turbulent flows is a new important tool to study the basic pro-

perties of turbulence. Here, we describe an improved and extended finite difference simulation
of turbulent flows in plane channels and annuli. The geometry is shown in Fig. 1. The scheme

is designed for Reynolds numbers

Re = #,0/8> 10,000 (1)
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Fig. 1. Channel geometry

In this stage we restrict ourselves to nonbuoyant flows with constant viscosity v and conduc-
tivity a so that the temperature is a passive scalar. The direct numerical simulation describes
the time-dependent and three-dimensional large-scale turbulence under statistically steady-
state conditions. The large scales are those which are resolved by the three-dimensional grid
of the finite-difference scheme. Typically up to 32 grid points can be used in each direction.
The effect of the subgrid scale (SGS) motion is accounted for by a SGS model. This approach
has been developed by Deardorff [1] and others and formed the basis of the code TURBIT-1
[2, 3] (“TURBulenter Impuls Transport™).

Further investigations have been concentrating on the following items [4]:

— development of a code TURBIT-2 for simultaneous simulation of turbulent temperature
fields in addition to velocity and pressure fields for plane channels and annuli.

— extension of the SGS model for SGS temperature transport and improvement of the existing
models in order to allow for a wider range of Reynolds numbers (from moderate to very
high) and to get reasonable results even on very coarse grids (which reduce the necessary
computing time).

— verification of the accuracy of the temperature simulation by comparison with experiments.

As a result, TURBIT-2 has been established, and several cases have been run in order to
study the effect of the improved SGS model. For this purpose we used between 2048 and

32768 grid cells. The present code is capable of larger grids; however, the computing time

required to attain steady state conditions becomes prohibitive long for more grid points;in

earlier studies a grid with 32 x 32 x 64 = 65576 points has been used [2]. In the following

we give some details of the method, summarize the experiences got up to now, and present

some results obtained with respect to the temperature simulation.

The Method Used in Turbit-2

Finite Difference Scheme

The code TURBIT-2 is based on a finite difference scheme which approximates the Navier-
Stokes equation, the continuity and the temperature equation. For the deduction of this

scheme the basic equations are averaged over finite grid volumes as described in [2]. Hereby,
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the triple integral defining the average is integrated by parts with respect to the divergence-
type terms so that the average is expressed in terms of finite differences of surface mean
values. This allows us to account for anisotropies introduced by grid cells with different
spacings Ax; and by cylindrical coordinates. The nomenclature is as follows:

8;y finite difference operator applied to some space function y, e.g.,
1
81y = e DGy + Axy /2,23, x3) — ¥ (21 — Ax1 /2, %3, X3)] )
1
f)_z surface mean value, e.g.,
_ 1
Iy = ——— [ [y, 2z, 23)dzydz, (3)

AX2 AX3 Axy Axj

Y% volume mean value
1
%y = [ ¥(21, 22, 23) - dz3dzydz;. @

Axl AX2 Ax3 Axy Axy Axg

The resultant equations are the
— averaged momentum (Navier-Stokes) equation

a aui

u,+8(uu, ——8 +8(

+6;4 P, 5
| o %)

— averaged mass (continuity) equation
8u; = 0 (6)

— averaged temperature equation

N BT\ v
3"’;”7‘ +8(yT) = & (a @) +°0. ™

The summation convention is assumedl All quantltles are made dimensionless by means
of the length scale D the friction velocity g = (T/Pg)'/? (To = time mean wall shear stress
averaged over both walls, 5, = constant dens1ty) and the heat-flux temperature TO dol
[8e8y] (§o = time mean wall heat ﬂux, c= specific heat capacity). The dimensionless dif-
fusivities are v = v /(uoD) anda=a /(uOD) The common Reynolds number Re and the friction
coefficient cr are related to Re, = 1/v by

Re, = Re (@y/fy) = Re\/cg/8 8)

The mean pressure gradient or driving force P, = 2 is introduced so that the fluctuating
pressure field p has a zero mean gradient in the axial direction. We assume that the axial mean
temperature gradient is zero, too. Otherwise a transformation has to be used as given in [4],
p. 65.

1 For repeated lower indices.
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The averaged products can be rewritten as

i o i
Tagu; = Tu; Ta; + ugu; ()]

S,
\?
~
"

F + u,r (10)

where u; = u; —/u;, T' = T—'T. The second part of each sum forms the SGS fluxes.

So far, no approximations have been involved. Indeed, Egs. (5)—(7) are the conservation
laws written in their integral form for grid volumes. However, the equations are as yet un-
closed. The next step, therefore, is to express all quantities in terms of grid quantities. We
employ a staggered grid as shown in Fig. 2. This allows us to retain the continuity equation
in its exact form, Eq. (6). The quantities not defined on the grid are approximated in a linear
and second-order manner using algebraic averages like 5// , €.8.,

y' = % [¥(x1 + Ay [2, 5, 23) + () — Axy[2, %y, %3)]. (11)

This results in the following finite difference scheme which we write without space averaging
bars; the superscript » refers to the time level (" = #At):

@7 —uf YAy = — & @w) +6,-(v6,-u,-—"zTu,'-)""‘ +8;1P; (12)

(T — T Y2A8) = — 8@ T )" +8;@8,T —'u )" ™" +0". (13)
The pressure p” is determined from a Poisson equation

8;8:p" = 8;ul'"1 [(241) (14)
so that the new time level velocities

up*t = At - (240) §;p" (15)

satisfy the continuity equation (6). Equation (14) is solved using fast Fourier transform [5].
Equations (12) and (13) correspond to a leap frog scheme which is started with an initial
Euler step and interrupted by an averaging step every »y, time steps (typically, 7y, = 50). The
actual code can be applied also for cylindrical coordinates and nonequidistant grid spacings
in the x3-direction.
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The Subgrid Scale Flux Approximations

The general form of the model for the SGS stresses ]u,u, is as descrlbed in [2]; several im-
provements have been added [4], however. The SGS heat flux’ u;T' has been modeled in an
analogous manner [4]. The main characteristics are as follows.

First, the SGS fluxes are split into a fluctuating and a time mean part, e.g.,

ju]"T ’u,’T’ - (’u,T Y+ (ju]'-—T') (16)

N )

“locally isotropic “‘inhomogeneous
part” part”

and approximated by eddy diffusivity models

WT = — 0,8, — T —Tazs, OT) amn
lag = epgler@Fles” )1/2/ ot (18)
Ia¥ = 83j904185 (ap)lfy (mesh), (19)

The corresponding eddy diffusivities [2] of the SGS stresses are

iy = ¢ Ye(Fics "B)Y?

foy (20)
¥ = 8;18;39%183 (i If (mesh). 21

The “isotropic” eddy diffusivities ‘a; and “u are determined under the assumption of
locally isotropic turbulence. Here, the characteristic length scale is derived from the surface
area’F of the grid cell oger which the average is defined and the characteristic velocity from
the SGS kinetic energy E'. The coefficients’cs, c, ‘er [2, 4] account for geometrical details
of the mesh and the finite difference scheme, and they are of order one. The coefficients ¢,
and ct,, however, must be determined so that the energy or temperature variance dissipation
due to the eddy diffusivities in the simulated gross-scale flow is of the same magnitude as the
molecular dissipation in reality. For this purpose we assume the validity of the well-known
Kolmogorov-Spectrum for the kinetic energy E(k) (k = wave number) and its counterpart for
temperature E't(k):

E(k) = al@™3k=53, Er(k) = B3 (epk 53 (22)
[ Bodk = Lapy, T Er@)dk = @' (23)
0 0

e = v(du;/ox;)?, et = 2a(3T/oxy)>. 24)

According to several experiments [4] we assume the Kolmogorov- and Batchelor-con-
stants « and S to be

a=15 §=13. (25)
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Table 1. SGS coefficients for an isotropic grid (Ax; = Ax5 = Ax3 = 1/16) (Re = 250,000, Pr = 0.7)

Stress model Kinetic energy model Heat-flux model
¢a 0.0709 c3 0.6336 T2 0.1807
Jeg 0.8283 €31 0.74 Jep 1.0
e 1.4744 €32 20.0 aT 1.4
12¢ 0.8233 ¢20 0.8044 cT10 1.0
€10 2.0

Fy 1.28

0 1.4

By means of these assumptions all coefficients ¢, ¢1,,’cs, %, oy can be evaluated [2, 4]
without further approximations. Nevertheless, in {4] we use the coefficients o7 and 0; to
adjust the models numero-empirically and to account for the deficiencies of the theory.
The values of the coefficients, ¢ . . ., are dependent on the geometry of the mesh. Typical
values of all SGS coefficients are listed in Table 1. The value of ¢, is different from that given
in [2] which was erroneous due to a sign error in the underlying theory ([5, see 4]). This (and
the changes in the energy equation, see below) result in a reduction of the factor ¢; from
3[2] to 1.4 [4]. The assumption of spectra of the Kolmogorov-type is not necessary. More
realistic spectra which depart at small as well as at high wave numbers have also been used
[4, 6]. The changes of ¢, introduced by these spectra remain less than 20% for the cases con-
sidered up to now. They become important, however, for fine grids and small Reynolds num-
bers, where the grid scale becomes comparable to the Kolmogorov microscale.

The “inhomogeneous’’ eddy diffusivities ia’t‘ and Y are derived from the common mix-
ing length models (8, ¢ = mixing lengths for momentum and heat [4]). The crucial factors
here are the damping functions f and fy. They are designed so that for very coarse meshes
the SGS model becomes equal to the common models for time-averaged turbulence (f, fi; > 1).
For very fine resolution the functions go to zero since in this case all SGS fluxes are described
by the isotropic parts. We use [4]:

f(mesh) = min {1, ¢;o [(Ax; Ax3 Ax3)/F5]Y?}) (26)
fu(mesh) = min {1, [eygcr10(AxAXE Ax3) 25 |Fy1Y2). X))

The important parameter here is Fy, the grid surface required to make the SGS fluxes
equal to the total turbulent fluxes. The coefficients ¢;¢ and ¢4 are correction factors which
have been adjusted numero-empirically; the coefficient ¢ty depends also on the molecular
Prandtl number.

The Subgrid Scale Kinetic Energy Transport Equation

The SGS kinetic energy ’F = % v(u,- — ¥7;)? s calculated integrating an additional transport

equation as described in [2]. The following changes and extensions have been introduced [4].
The production term, Eqs. (24) and (36) of [2], has been extended to include the SGS

energy production caused by the inhomogeneous part of the SGS stresses. This change has
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been found to be important in the near-wall region, especially in annular channels, in order
to predict a correct cross-stream energy profile.

The dissipation rate € is now modeled by means of three terms: € = € + €77 + €/77. The
first term replaces the old model (c; as in [2]):

e = c3('E)¥?/min (h, c3,9). (28)

The inclusion of the minimum function makes the model suited for very coarse grids, in partic-
ular near the walls, where the mixing length £ becomes smaller than the mesh scale 4. For
small Reynolds numbers it has been found to be necessary to add the second term, which
describes the direct viscous dissipation:

€1 = VC3g vl?/[mln (h, C31Q)]2. (29)

The values of c3, and c3, have been determined [4] from the empirical energy spectra pro-
posed by Pao [7]. According to Jones and Launder {8], finally the term

e = w85 E)V?? (30)

has been added, which accounts for the dissipation in the viscous sublayer. It is of negligible
magnitude, however, for those Reynolds numbers and mesh sizes considered up to now. The
relative magnitude of these three dissipation terms is shown in Fig. 3 for two examples.

() Re = 250000
Ri/R2=1
401 K23 (e)
30
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20.
€
104 (€n)
04 <el>
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— X3
B¢ey Re = 25000 (&)
Ri/R2= 025
222 (ex)
(ep
<em) Fig. 3. Energy dissipation rate (¢ and its three
033 053 073 093 113 133 parts for two cases, K2.3 and Z2.2
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Table 2, Case specifications

K1 K2.2 K2.3 Z2.2

X 2 3.2 4 3.2
X, 1 2 2 .
M 16 32 64 32
M 8 16 32 32
KM 16 16 16 16
Ry/Ry 1 1 1 0.25
Re 18,700 25,000 250,000 25,000

Pr 0.71 0.007 0.7 0.7
CPU-time 40 min 3h 18h 7h
IBM 370/168

Problem time 6.05 4,24 4,23 4.51
No. of time Steps 2,128 2,350 3,224 2,625
The Boundary Conditions

In the x,- and x,-direction we assume periodicity with periodic lengths X, and X, (or angle,
resp.), the values of which are listed in Table 2.
In the x;3-direction, at the walls we set the normal velocity to zero. In addition, the no-slip

3
aui

boundary condition requires prescription of the wall shear stresses 7; = — v o and the
. oT . L .
normal wall heat flux ¢,, = —a o as a function of the velocities and temperatures in the
X3

wall adjacent grid cells. The stresses are computed as in [2] with two important changes [4]
which refer to Eq. (45) of [2]. First, the time mean value (r,), which is equal to 1 in the pre-
sent units for a steady-state plane channel flow, is not prescribed this way rather than recal-
culated by proper averaging from the actual and recent velocity fields. Secondly, the wall
roughness coefficient £ can be a function of the equivalent sand-roughness height and the Xq-
coordinate. This allows us to study secondary flows. The boundary condition in terms of the
heat flux g, is approximated for small Peclet numbers by

a

ren) Ty —Ty). €y

dw =
(v]—,l = first grid cell value, Ty, = wall temperature). For large Peclet numbers we use
dw = Gw CTi =TI CTy - T (32)

where either (4, or T, must be prescribed and the unknown part is determined from the
logarithmic law of the wall [9] averaged over the first grid cell

CTy-T) = — (iT‘iV;fT }& [In(Re, (1,)/2) + In(Ax3)— 1] + By (33)

(xy = 0.465, Br = function of wall roughness and Prandtl number [4]).
By setting u'*! = 0 at the walls, instead of using (12), the Neumann boundary condition

83p = 0 at the wall follows from (15).
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Results

The purpose of this chapter is to demonstrate the general agreement between experiments and
TURBIT-2 results.

SGS Model Sensitivity

Several preliminary cases have been run in order to study the effect of the free SGS parameters
01, 0, €10, and cr49, The values of which can be estimated to be of order one theoretically but
remain to be fixed numero-empirically. For this purpose a rather coarse grid has been used

(K 7, see Table 2). Typical results [4] are a 15% increase of the kinetic energy near the walls
(which is the most sensitive measure) as a result of a 20% increase of 0, and a 5% decrease of
the same quantity as a result of a 10% increase of ¢;o. As shown in Fig. 4, the importance of
the temperature model coefficients or and cr o are smaller. The values finally used are those
listed in Tab. 1. One should be reminded that an even weaker sensitivity is observed for finer
grid resolutions.

RT’)'

b k2

2t - —0

1F 105
Re = 30
Pr = 07

0" x Cno =0

Ri 2)| oCmngz2
KMH

= [
K=2

3 Tzl Fig. 4. rms temperature fluctua-
tions in the radial cells at K =2

2 and K = KMH = KM/?2 (channel

5 X X . middle) as a function of the SGS

0 1 2 3 coefficients, case K7
- Crno

Flow Field and Velocity Statistics

Figure 5 shows a typical resulting turbulent flow field for case Z2.2. This is an annulus (R1/
R2=0.25) heated from the inner rod with an adiabatic outer wall. The contour lines and
velocity vectors show the known quasi-random behavior. The flow is from left to right. The
velocity contour lines show some inclination against the flow direction towards the channel
middle; this is observed in all plots of this type. The fluctuating kinetic energy is generally a
rather smooth space-function except for some peaks (bursts?) near the walls, which are mainly
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contained in the directly resolved part of the flow field. As expected from experiments [10, 11],
the kinetic energy is larger near the outer wall than near the inner one. This result was not so
obvious in the older code-version [3]. The temperature fluctuations are large near the heated
inner wall only.

The time mean value of the kinetic energy is shown in Fig. 6. Also plotted in this figure
is the SGS part which amounts to less than 25% of the total value. The corresponding dis-
sipation rates are depicted in Fig. 3 mentioned above. Here we see the effect of the three
model parts for two different Reynolds numbers. The direct viscous dissipation rate ¢ is not
negligible especially near the walls. The computed velocity profile given in Fig. 7 shows very
good agreement with the corresponding experimental results of Ball [12] and Lee [13]. The
difference between the measured and computed maximum value {u; a5 itself is less than 1%
if we refer to Lee. The results of Ball are smaller by 10%, this seems to be a consequence of
rather densely located spacers used by Ball in his annular channel. Figure 8 shows the shear
stress; the smaller values correspond to that part of the shear stress resolved directly by the
large-scale flow. We conclude that the major part of the momentum transport is accomplished
by the resolved flow part. No experimental data are available for this ratio of radii. We have
included some measurements for other radii to show the general agreement.

Caopide u>
20..
K3} Re = 25000
Ri/Ry= 025 (€
Z222
34
[0S x Ball 1972 {uy/Upmge)
] 104 o Lee 1964 (uy/Uimax)
o TURBIT-2 ('Gy)
z22
1_
/\—/\\ <VE—.>

0 T T T T 1 0 T T T T

033 053 073 093 113 133 033 053 0.73 093 113 133

R——= R
V— .
Fig. 6. Total ((E)) and SGS ({ E ")) kinetic energy Fig. 7. Time mean velocity profile
iz) i=22 i=3
.2
101 (U u3) 26 <u. ) + * x Comte-Bellot 1965
—am\ 3=\ . 8 R o o s TURBIT-2,K23
< U1“3>’< uug) & A
+ 3™
0s- o iy
0

X
113 093 13 133

R——

-0.54
. + Ry/Ry = 0.176 ,
*RIR = 0.398 } Lawn, Elliott 1971
8 aRy/R2 =0.375  Brighton, Jones 1964 0 S . . , ,
_wJ 0,0 Ri/Ry= 0.250  TURBIT-2,Z2.2 0 0.2 0.4 06 08 10
—_— x3
Fig. 8. Total and large-scale turbulent shear stress Fig. 9. rms velocity fluctuations
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For a plane channel we compare our computed rms velocity fluctuations with the mea-
sured results of Comte-Bellot [14] (see Fig. 9). The differences are less than about 20%. Some
of the differences might be attributable to the SGS part which has been computed from the
SGS kinetic energy and added to the resolved part under the assumption of local isotropy. In
all our simulations we observe a surprising result: The u3 rms values are larger than the u,
values by a few percent in the middle of the channel. This might be a consequence of aniso-
tropy and different resulting energy supply to these velocity components by means of the
pressure fluctuations. It is not clear from experiments whether this effect is real, because the
accuracy of the measurements is not sufficient for this purpose. Interestingly, this result is
not discordant with the measurements of Comte-Bellot {14].

Pressure Statistics

The time mean value of the pressure is not a constant as shown in Fig. 10. Using an arbitrary
mean value (the mean is set to zero in the first cell near the left wall by the Poisson-solver used),
we compare our computations with the experiments of Patterson et al. [15]. The rms pressure
fluctuations are plotted in Fig. 11. The rms value at the wall, 2.7, corresponds well with experi-
ments [3]. No internal measurements are known for this geometry. The case K 7 gives rather
small rms values, this is a consequence of too small periodicity lengths X; and X,, which result
in a filtering of the low-frequency fluctuations.

05

()

7@% Patierson et al.1967

0.3 o——0 TURBIT-2 K7
s——a TURBIT-2 K2.2

Fig. 10. Time mean pressure profile
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8 K22

2.4
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0 T — T T 1 . .

0 0.2 0.4 06 0.8 1.0 Fig. 11. rms pressure fluctuations

— X3
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Figure 12 shows a contour-line plot of the instantaneous fluctuating pressure at the wall
of a plane channel (X2.3) and the corresponding experimental result of Dinkelacker et al. [16,
17]. Both plots are scaled so that the spatial dimensions are directly comparable. In both figures
we observe a 45°-inclination. From the numerical results it is obvious that the pressure fluc-
tuations are correlated over longer distances in the x,-direction than in the mean flow direction
x;. This finding agrees with earlier results [ 3] and experiments [ 18]. The convective velocities
of the wall pressure fluctuations are roughly the bulk velocity [19].

Temperature Statistics

The mean temperature profile, corresponding to Fig. 5 (Z2.2) is shown in Fig. 13. The agree-
ment with experimental data [12, 13, 20] is satisfactory except for the results of Ball, which depart
probably due to the above mentioned spacers and a rather short thermal entry length. The Nus-
selt-number, calculated from this mean temperature profile, is Nu = 50.6. Experimental results
deviate from this value by + 15% [4].

For a plane channel with a rather coarse grid (K 7), we show the rms temperature fluctua-
tions in Fig. 14. In this case the fluid is heated by a volumetrical heat source within the fluid
and cooled at both walls by prescribing constant and equal wall temperatures. No equivalent
experimental data are known for a plane channel. We, therefore, refer to the pipe data of
Bremhorst et al. [21], which are in reasonable agreement. Caused by the deficiencies of the ex-
perimental equipment, the data of Bremhorst are 15% too small [22]. In Fig. 15 we show the
correlation coefficient between the temperature component and the cross-stream velocity com-
ponent for the same channel in comparison to several experiments [21—25]. The good agree-
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ment shows that the turbulent heat flux is correctly simulated. This is mainly a consequence
of the inhomogeneous part (16, 19) of the SGS heat-flux model; it was found [4] that neglec-
tion of the inhomogeneous SGS heat-flux model results in higher temperature rms values (see
Fig. 4), which cause smaller turbulent heat-flux correlation coefficients, Further results with
respect to varying molecular Prandtl numbers and resulting turbulent Prandt! numbers [4, 26]
have been obtained. Also, secondary flows induced by varying wall roughness have been
observed numerically [27].

Conclusions
Our main conclusion is that TURBIT-2 is a well-suited code to simulate directly turbulent
velocity and temperature fields in channel flows even if rather poorly resolving grids are used.

This result is a consequence of several improvements which have been added to the SGS model.
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In particular, the SGS kinetic energy equation and the inhomogeneous part of the flux approxi-
mations have been improved.

It has been shown that the resulting temperature fields are rather insensitive with respect
to the model coefficients. The differences between the numerical results and experimental data
are small in comparison with the scatter of the latter.

We are now able to produce results which can hardly be measured like, e.g., the pressure
statistics and pressure-temperature correlations, using only a modest amount of computing
time (e.g., 40 minutes for case K 7). This achievement has to be payed for, however, by a small
increase in empirical information required; also, the amount of novel information extractable
from a direct simulation decreases with decreasing resolution.

References

1. Deardorff, J. W., “A numerical study of three-dimensional turbulent channel flow at large Reynolds
numbers”, J. Fluid Mech. 41, 453—480 (1970)

2. Schumann, U., “Subgrid scale model for finite difference simulations of turbulent flows in plane
channels and annuli”, J. Comput. Phys. 18, 376-404 (1975)

3. Schumann, U., “Numerical investigation of the wall pressure fluctuations in channel flows”, Nucl.
Eng. Des. 32,3747 (1975)

4. Grotzbach, G., “Direkte numerische Simulation turbulenter Geschwindigkeits-, Druck- und Tempera-
turfelder in Kanalstrémungen”’, Thesis, KFK 2426 (University of Karlsruhe 1977)

5. Schumann, U., “Ein Verfahren zur direkten numerischen Simulation turbulenter Strémungen in
Platten- und Ringspaltkanilen und iiber seine Anwendung zur Untersuchung von Turbulenzmodellen™,
Thesis, KFK 1854 (University of Karlsruhe 1973)

6. Lorcher, G., “Laser-Doppler-Messungen von Energiedichtespektren in turbulenter Kanalstrémung”,
Thesis, KFK 2448 (University of Karlsruhe 1977)

7. Pao, Y. H., “Structure of turbulent velocity and scalar fields at large wave numbers”, Phys. Fluids 8,
1063-1075 (1965)

8. Jones, W. P, and Launder, B. E., “The calculation of low Reynolds-number-phenomena with a two-
equation model of turbulence”, Int. J. Heat Mass Transfer /6, 11191130 (1973)

9. Kader, B. A., and Yaglom, A. M., “Heat and mass transfer laws for fully turbulent wall flows”, Int.
J. Heat Mass Transfer 15,2329-2351 (1972)

10. Brighton, J. A., and Jones, J. B., “Fully developed turbulent flow in annuli”, J. Basic Eng. 86,
835-844 (1964)

11. Lawn, C. J., and Elliott, C. J., “Fully Developed Turbulent Flow Through Concentric Annuli”,
CEGB-Report RD/B/N 1878 (1971)

12. Ball, H. D., “Experimental Investigation of Eddy Diffusivities of Air in Turbulent Annular Flow”,
Ph. D. Thesis (Kansas State University 1972)

13. Lee, Y., “Turbulent Flow and Heat Transfer in Concentric and Eccentric Annuli”’, Ph. D. Thesis
(University of Liverpool 1964)

14. Comte-Bellot, G., “Ecoulement turbulent entre deux parois paralléles”, Publ. Sci. Tech. Minist.
Air Fr. 419 (1965)

15. Patterson, G. K., Ewbank, W. J., and Sandborn, V. A., “Radial pressure gradient in turbulent pipe
flow”, Phys. Fluids 10, 20822084 (1967)

16. Dinkelacker, A., Hessel, M., Meier, G. E. A., and Schewe, G., “Further Results on Wall Pressure
Fluctuations in Turbulent Flow”, Federal Republic of Germany Hydroacoustics Symposium, ed.
by H. Merbt, Vol. 3 (Frauenhofer Ges., Miinchen 1975) pp. 2938

17. Dinkelacker, A., Hessel, M., Meier, G. E. A,, and Schewe, G., “Investigation of Pressure Fluctuation
Beneath Turbulent Boundary Layer by Means of an Optical Method”, Bericht 105 (Max-Planck-
Institut fir Stromungsforschung, Gottingen 1977)

18. Clinch, J. M., “Measurement of the wall pressure field at the surface of a smooth-walled pipe containing
turbulent water flow”, J. Sound Vib. 9, 398—419 (1969)

19. Grétzbach, G., “Convective Velocities of Wall Pressure Fluctuations in a Turbulent Channel Flow
Deduced from a Computer-Generated Movie”’, in Structure and Mechanisms of Turbulence II, ed. by
H. Fiedler, Lecture, Notes in Physics Vol 76 (Springer, Berlin, Heidelberg, New York 1978), 320—324

384



20.

21.

22.
23.

24.

25.

26.

27.

Barrow, H., “Fluid Flow and Heat Transfer in an Annulus with a Heated Core Tube”, Proc. Inst.
Mech. Eng. London 169, 1113-1124 (1957)

Bremhorst, K., and Bullock, K. J., “Spectral measurement of turbulent heat and momentum transfer

in fully developed pipe flow”, Int. J. Heat Mass Transfer 16, 21412154 (1973)
Bremhorst, K., personal communication (1977)

Ibragimov, M. Kh., Subbotin, V. 1., and Taranov, G. S., “Velocity and temperature fluctuations and

their correlations in the turbulent flow of air in pipes”, Int. Chem. Eng. 11, 659—665 (1971)
Schon, J. F., Mathieu, J., Baille, A., Solal, J., and Comte-Bellot, G., “Experimental study of dif-
fusion processes in unstable stratified bouncary layers”, Adv. Geophys. I8B, 265—-272 (1974)

Pimenta, M. M., Moffat, R. J., and Kays, W. M., “The Turbulent Boundary Layer: An Experimental

Study of the Transport of Momentum and Heat with the Effect of Roughness’, Report HMT-21
(Stanford University 1975)

Grétzbach, G., “Erste Ergebnisse der direkten numerischen Simulation von Temperaturfeldern bei

turbulenter Natriumstromung”, KFK 1276/2, 129—6 — 129—11 (Kernforschungszentrum Karls-
ruhe 1976)

Grotzbach, G., “Direct Numerical Stimulation of Secondary Currents in Turbulent Channel Flows”,
in Structure and Mechanisms of Turbulence II, ed. by H. Fiedler, Lecture Notes in Physics Vol. 76

(Springer, Berlin, Heidelberg, New York 1978), 308—319

385



Reprint from

Turbulent Shear Flows I
Editors: F.Durst B. E.Launder F.W. Schmidt J. H. Whitelaw

© by Springer-Verlag Berlin Heidelberg 1979
Printed in Germany. Not for Sale

Springer-Verlag
Berlin Heidelberg New York






