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NUMERICAL INVESTIGATION OF RADIAL MIXING CAPABILITIES IN STRONGLY
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The flow behavior in the HDR downcomer during setting of the initial conditions for blowdown tests is investigated
with the numerical simulation program for turbulent channel flows, TURBIT-3. This computer code is based on the com-
plete 3-dimensional non-stationary basic equations for mass, momentum and heat. The subgrid scale models used for the
turbulence structures not directly resolved by the grid are extended to take into account the buoyancy in the case of tur-
bulent channel flow. The extended computer code is used to investigate how fast differences in temperature can be reduced,
which are caused by inadequate mixing in the lower plenum during upward flow in the downcomer under conditions of
mixed convection. It appears that, contrary to the computations neglecting the influences of buoyancy, the temperature
differences are rapidly reduced already in the entrance zone of the downcomer. In this zone, local recirculation takes place
in the cold region, which is quickly suppressed with increasing distance from the entrance by the intensification of the tur-
bulence effects. A hot chimney extending through the whole downcomer cannot develop. Already at half level, the influence
of buoyancy can be considered to be negligible in the downcomer which is assumed adiabatic. Under these conditions it
should be possible in principle to set the enthalpy stratification by the planned layout of the experiment in the HDR-pres-

sure vessel.

1. Introduction

In the HDR-safety research program, blowdown
tests are carried out inter alia at the shut down super-
heating steam reactor (Heissdampfreaktor HDR) in
Kahl [1]. These tests serve the purpose of investigat-
ing the fluid and structure dynamical load of the reac-
tor pressure vessel and its internals in the case of sud-
den depressurization by rupture of a cold water feed-
ing pipe. It is intended to start these tests from a tem-
perature field within the pressure vessel, which is
typical of the operating condition of a pressurized
water reactor. This means that within the core barrel,
higher temperatures, rising towards the top, are to be
set as compared with the downcomer between the
core barrel and the pressure vessel wall (fig. 1). This
enthalpy stratification is to be achieved by supply of
hot water (h) in the upper plenum and by supply of
colder water (c) in the lower plenum. The mixed
water (m) is withdrawn at the upper end of the down-
comer.
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The radial temperature gradient within and at the
core barrel developing in this flow gives rise to some
problems which are connected with the superposition
of natural convection with forced flow phenomena
within the core barrel and in the downcomer. The
possible disturbances within the core barrel are of
minor importance because of the predominantly stable
stratification, the more so since they do not counter-
act the objective of flow guidance, i.e. to set a tem-
perature field decreasing from top to bottom. By
contrast, considerable uncertainties occur in the down-
comer. Above all, the questions are raised whether

(1) the generation of a “chimney” might be pro-
moted by the radial heat flow through the core barrel
in the downcomer (hot, accelerating zone on a reducing
cross section near the core barrel and cold, decelerat-
ing zone on an expanding cross section on the pressure
vessel wall side);

(2) by azimuthal arrangement of the nozzles a
“chimney”” as mentioned under (1) might be generated
in the azimuthal direction over rather large regions in
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Fig. 1. Flow guidance in the HDR pressure vessel for setting
enthalpy stratification.

the downcomer;

(3) by inadequate mixing of the two mass flows,
generation of a chimriey is supported equally in the
downcomer;

(4) or whether by intensified turbulent mixing of
the two mass flows in the downcomer a radially almost

constant temperature profile is established which will
not result in influences by natural convection.

These problems were investigated prior to the expe-
riments with an extended version of the TURBIT—-2
numerical simulation program [2]. The method of
direct numerical simulation of turbulent flows is based
on the complete time-dependent, three-dimensional
equations for mass, momentum and heat. Using finite
difference grids with finite spatial resolution, subgrid
scale models are required for consideration of the
momentum and heat transport within the grid cells.
Turbulence elements greater than a few grid cells are
simulated directly. Therefore, all those quantities of
turbulence may be calculated from the numerical
results, which are largely dominated by gross-scale
turbulence.

For turbulent channel flows, this method was used
for the first time by Deardorff [3]. The method was
extended by Schumann [4] for application to non-
equidistant meshes, to finite Reynolds numbers and
to a more realistic consideration of the subgrid scale
fluxes in the near wall region. Further extensions by
Grotzbach [2] relate to the applicability to low
Reynolds number flows, coarse grids, rough walls and
additional simulation of the temperature field. Thus,
the accuracy of the numerical results becomes compa-
rable to experimental data, even if rather coarse grids
are used and short time intervals are calculated [2,5].

Because of these advantages, the method of direct
numerical simulation provides a good possibility for
studying the problems of the strongly buoyancy-
influenced convection as characterized above. It is the
purpose of this publication to report about the essen-
tial results of the numerical investigation of the pro-
blems indicated. Initially, the features of the numeri-
cal technique used will be explained together with the
related subgrid scale model.

2. Basic equations of the simulation method
2.1. Normalized basic equations

The basic equations for mixed convection are the
continuity equation (mass balance), the temperature
equation (enthalpy balance), and the Navier—Stokes
equation extended by the buoyancy terms (vectorial
momentum balance). For simplification, the validity
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of the Boussinesq approximation is assumed, i.e. the
assumption is made that the material properties can be
considered as constant in all terms of these equations,
except for the buoyancy term g;8(T;er — 1) (variables
marked by " possess dimensions).
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As below, the Einstein summation rule must be applied
here to all terms bearing the same subscripts twice. The
pressure term has been split in a purely formal way into
a term averaged over time {({y) means the time average
value of y) and a time dependent one, the merely tur-
bulent contribution of variation. The dimensionless
numbers appearing in egs. (1) are defined as follows

by the normalizing variables bearing the subscript O:
Reynolds number

Reg = uoD/7 (2a)
Prandt] number
Pr=vfa, -(2b)
Grashof number
Gro; =g;BToD*v* . (2¢)

All lengths are normalized with the channel width D.

The time scale introduced was 7o = D/&Q (D = channel
width) and the pressure scale pg = pou3. The free nor-
malizing variables are defined as far as possible con-
sistently with those applicable to TURBIT-2, mainly
because the formulae for the wall conditions are taken |
over for the velocity field. Consequently, the wall shear
stress velocity u, averaged over both walls is equally
chosen for u

{‘0 = &T = \/;w/;) s (3)

offering the advantage that the imposed pressure gra-
dient in the main flow direction x (fig. 2) can be cal-
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D

Fig. 2. Orientation of the coordinate system and periodical
boundary conditions at the channel recorded.

culated from a force balance of the flow volume to be
(Op/ox|)=2.

Considering the case studied here of a channel adia-
batic on both sides the temperature difference between
the two walls at the time ¢ =0 is introduced as a nor-
malizing temperature:

To = (Tw1 — Tw2)li=o - @)

The reference temperature T in the buoyancy term
is set equal to the volume averaged value %7 of the
temperature in the entire channel in order to avoid a
net contribution of the buoyancy term to the pres-
sure gradient imposed.

The dimensionless numbers to be predetermined as
by eqs. (2) have been correlated as follows to those
usually employed:

Reg =Re, = Re/%uy), Re=%u)D/v, (5a)
Gro;=Gr;, Gr; = gif(Tyyy — Twa) D397 . (5b)

The volume averaged value of the mean velocity %)
can be calculated from eq. (5a) for a given friction
factor Cs to be

Re, = Rev/Cy/8 . (6)

Herewith, the necessary normalizations of the basic
equations have been introduced for use of TURBIT—3.

2.2. Volume averaged conservation equations

The method of direct numerical simulation pre-
sented in this paper is based on a finite difference
scheme which solves the complete Navier—Stokes
equation, the continuity and the thermal energy equa-
tions. Following Schumann [4] for the derivation of
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this scheme, the basic equations (1) are averaged over
finite grid volumes V' = Ax; Ax, Axj3:

1
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Hereby, the triple integral defining the average ",

eq. (7a) is integrated by parts with respect to the
divergence type terms, eq. (7b) so that the average is
expressed in terms of finite differences of surface mean
values ‘7. This allows the use of grid cells with differ-
ent spacings Ax;. The resultant equations are the aver-
aged mass or continuity equation, the averaged mo-
mentum or Navier—Stokes equation, and the averaged
thermal energy equation:
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With a few exceptions, almost all terms of the equa-
tion system were directly brought into a finite differ-
ence form by partial integration. The rest of partial
derivations are substituted by linear finite difference
approximations.

2.3. Subgrid scale flux approximations

No considerable approximations have been involved
so far. However, the volume averaged equations (8)
are yet unclosed. For the unknown subgrid scale (SGS)
fluxes of momentum /i and heat "WT", special sub-
grid scale models are introduced which reflect the
momentum and heat transport caused by the vortices
not subjected to spatial resolution in the grid. These
models have been tested and used in channel flows

with differing molecular Prandtl numbers, smooth and
roughened walls, and with secondary flows [2,5]. In
principle, they largely rely on statistical turbulence
models. However, their influence is heavily reduced by
the choice of the mesh width as a characteristic length
scale. The events taking place within the subgrid scale
structure largely obey universal laws which can be
derived from the theory of isotropic turbulence.

To be able to employ this theory strictly to the
theoretical determination of the model constants, the
models were split formally into a time dependent
part which can be treated by the theory of isotropic
turbulence and a time or ensemble averaged part,
respectively, which takes into account the inhomo-
geneities caused by the walls. For both parts gradient
diffusion is assumed, analogous to molecular diffusion:

= Dy — (DY) — ™Dy, (2)
WT = a8 (0T — ) —Tat6 0T, (9b)

where Dj; = du;/9x; + du;/0x;. The unknown subgrid
scale eddy diffusivities “u and “u*, and eddy conduc-
tivities /g, and /a; are calculated from modified com-
mon turbulence models:

According to Schumann [4], the isotropic eddy
diffusivities “u are determined by a Prandtl energy
length scale type model. The other parts of the models
are as in [2]. The isotropic eddy conductivities Ja, are
modeled in an analogous manner, assuming that the
subgrid scale heat flux depends on the velocity fluc-
tuations within the grid cells:

u=CICIFICE )12
lay = Cr/ Cr(FICS"EN 1 .

(10a)
(10b)

Here, the characteristic length scale is the surface area
IF=Ax; Ax, Ax3/Ax; of the grid cell over which the
averaged egs. (9a) and (9b), are defined, and the cha-
racteristic energy is the SGS-kinetic energy VE" of the
unresolved velocity fluctuations, for which we have
to integrate an additional transport equation.

The coefficients /Cs, “C and /Cr account for geo-
metrical details of the mesh and the finite difference
scheme and are of order one. Because of the formal
splitting eq. (9) of the SGS-fluxes, these coefficients
and the dominating coefficients, C; and Ct, may be
determined theoretically, assuming locally isotropic
subgrid scale turbulence. For this purpose, we assume
the validity of the well-known Kolmogorov spectra
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for kinetic energy and temperature variances (for
details see Grotzbach [2]). The natural convection
mainly acting on the large scale structures, see for
example Turner [6], can be left out of consideration
when calculating the subgrid scale constants, since
the subgrid scale constants respond at a relatively mo-
derate degree to changes of the energy spectra within
the range of large vortices.

The inhomogeneous eddy diffusivities Yu* and eddy
conductivities ’a, are derived from modified common
mixing length models:

< aul>‘f(C10,Ax)

)
The mixing lengths [ and I are well-known functions
of the distance from the wall and the wall roughness.
In addition, /T depends on the molecular Prandtl num-
ber of the fluid. We use a Nikuradse—Van Driest and
Cebeci formulation, respectively. The crucial factors
in eq. (11) are the damping functions f and f formed
by those mesh surfaces JF over which also the contri-

buting velocity and temperature fluctuations have
been averaged:

Uu® =818 3,0 (11a)

(11b)

lag =8 3lly f1(Cr10, AX;) .

ACro, Ax;) = Min{l, Co(*F *F)* Fg 1%}, (12a)

J1(Cri0, &x;)

= Min {7, (C10 Cr10)/2CF 2Ax3)'/s F1d/?} .
(12b)

They are designed so that for very coarse meshes the
SGS models become equal to the common models
for time averaged turbulence (f, fr = 1). For very fine
resolution the functions vanish (f, fr = 0) since in
this case all SGS fluxes are described by the isotropic
parts. The normalization surfaces Fo = Fpg = 1.28
were derived from experimental results for the two
point-correlations of the velocity fluctuations. Using
these values, the constants Cyo =2 and Cpjo =1 are
ultimately adapted in a numerical -empirical mode
within the frame of a sensitivity study [2].

It was found in this sensitivity study that within the
range of ultimately used values of all constants the

numerical results respond but moderately to changes
of the constants. The reason why the subgrid scale
models used here exhibit less dependencies on the
subgrid scale coefficients than is usually the case, e.g.,
also with respect to the models used by Deardorff [3],
must be attributed to the subgrid scale structure energy
equation used in addition which causes non-linear
coupling between the large scale structure and the
subgrid structure represented by the models [2, Appen-
dix 5].

From Turner [6] and Wippermann [7], it is known
for meteorological flows that both the turbulent
exchange coefficients and the mixing lengths them-
selves depend on the influence of natural convection.
From experience gathered by Khosla et al. [8], this
applies equally to vertical pipe flows. Unfortunately,
the existing models, e.g., by Wassel and Catton [9],
are valid only for horizontal flows along plane plates,
and by Seban and Behnia [10] for round, buoyant
jets in a quiescent surrounding only. This implies that
an influence of buoyancy on the inhomogeneous
parts of the subgrid scale model cannot be formulated
so as to be meaningful. According to the results of the
sensitivity study mentioned above, the effects of this
lack can be considered minor in direct numerical simu-
lation, contrary to the statistical turbulence models
since, on the one hand, the subgrid scale models gene-
rally describe only the turbulence portion not resolved
by the grid and, on the other hand, the isotropic parts
of the models completely take into account the influ-
ence of buoyancy. The respective extension of the
model will be demonstrated below.

2.4. Additional SGS energy equation

The characteristic energy used in the isotropic parts,
eq. (10) of the SGS ﬂux models is the subgrid scale
kinetic energy E’ = —"(u, — Y;)*. It is calculated using
an additional time dependent three-dimensional trans-
port equation as in principal deduced by Schumann
[4] and improved by Grétzbach [2]:

E’
? = production + diffusion
— convection — dissipation . (13)

The subgrid scale structure shear stresses /uju; con-
g i

tained in the production term
I—

production = —u,u,& frre (14)
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are represented by the complete subgrid scale model
egs. (9a), (10a) and (11a). In case this energy equation
is to be applied to mixed convection or pure natural
convection according to Deardorff [11], an additional
production term must be introduced here which
describes the subgrid scale turbulence production by
variation of the density. Considering normalization
according to section 2.1, one obtains as a substitute
of eq. (14) for the production term:

Groji——
—I uiT . (15)

. =5 i—
roduction = — wu; §; u; —
P P751% T Red

The turbulent subgrid scale heat flux ]u,'-T " obtained
in the additional term can be described by the com-
plete temperature subgrid scale model eqgs. (9b), (10b)
and (11b).

The extended model for SGS dissipation €, like
the production term accounts for inhomogeneity
effects. In addition, it allows application of the me-
thod to smaller Reynolds numbers (Re 2 10%) and
coarser grids. We use the Rotta-type formulation:

Ve' = C3"E"32/Min(h, C31]) + C3,v"E’ Min(h, Cs41)? .
(16)

The first term is dominant at large Reynolds numbers,
while the second term dominates at small Reynolds
numbers. The minimum function gives the grid size
h=(Ax; Ax, Ax3)'/3 as a characteristic length scale
in the core of the flow, and the mixing length/ in the
near wall region. For the determination of the coeffi-
cient C3 and of the constants C3; =0.74 and C3; =
20.0, the Laser—Doppler measurements by Lorcher
[12] for a plane channel have been used.

Due to lack of validated information, it is supposed
that the dissipation in the subgrid scale structure is
equally free from phenomena of natural convection
as the convection and diffusion terms which had been
taken over from Schumann [4].

2.5. Influence of natural convection on the wall con-
ditions

In the basic equations (8), the following terms
appear at the walls-

1%

— 17
Reg 0x3 |, (172)

=TWa

1T
B ReoPr ox3 |,

=qw - (17b)

It is known that in turbulent flows, the profiles of u
and T are very steep near the wall and, in addition,
they undergo very strong variations. The grids pre-
viously used in TURBIT-1 and -2 [2,4,5] do not
resolve this range. Therefore, it is not permitted to
make linear approximations of the gradients mentioned
above at the walls. In refs. [2,5], an approximation
was therefore used successfully, which relies on the
universal logarithmic velocity profile integrated over
the mesh next to the wall. The constants contained
are obviously dependent on the Grashof number in
case of mixed convection as may be concluded from
Wippermann [7], Back et al. [13] and Arya [14].
This dependency can also be easily indicated by the
theoretical coupling of the logarithmic law of the
wall with known relations on the friction coefficient;
see e.g., Rotta [15]. Information about the friction
factors includes at least the fact indicated by Petuk-
hov [16] that they undergo considerable changes. For
instance, the friction factor Cr and the Nusselt num-
ber Nu are said to be considerably higher than in case
of purely forced convection fc for data typical of
the HDR downcomer (section 3), viz. Cy/Cese = 8.92
and Nu/Nug. = 2.23.

A reliable formulation of the law of the wall
influenced by natural convection and relating to ver-
tical channel flows can, however, not be made in the
light of the present state of knowledge, since the
existing criteria influencing the friction factor and
the Nusselt number are contradictory [17].

Therefore, it was assumed in TURBIT-3 that the
logarithmic law of the wall is not influenced by natu-
ral convection. Although this means that the quanti-
tative evidence of the numerical results of TURBIT-3
is impaired in the case of heavily influenced mixed
convection, verification of the HDR problem will show
that a higher friction factor is nevertheless obtained.
Moreover, in the case investigated here of a very high
influence of buoyancy, the point of major turbulence
energy production is displaced away from the wall
into the center of flow. This means that the turbulence
state obtained as well as the averaged velocity become
less sensitive to inadequate wall approximations. The
same problems obviously occur with molecular
Prandtl numbers Pr 2 0.1 when formulating the wall
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heat flux ¢, [eq. (17b)]. To avoid any additional
problems in the temperature section of the computer
code, the model to be simulated was considered to be
adiabatic at both walls. This allows the use of a linear
formulation without significant errors for the instant-
aneous temperature gradient at the wall. The state-
ments concerning radial mixing are essentially influ-
enced only in the final phase by the assumption of
adiabatic walls, when the radial temperature compensa-
tion implies the disappearance of the buoyancy term.
This means that a direct quantitative answer to ques-
tion 1 is no longer possible. It can be answered only
qualitatively.

Details of the method of calculating the SGS coef-
ficients and of the finite difference scheme adapted
so as to allow integration in space and time of the
basic equations are given in ref. [2,4]. Here the main
features of the method of subgrid scale modeling are
discussed with particular reference to only those
aspects including buoyancy effects. The momentum
equation was extended in accordance with the Bous-
sinesq approximation and the buoyancy term. This
implied that for formal reasons, the extension of the
subgrid scale energy equation by an additional term
also became necessary. The wall approximations are
not extended.

3. Definition of initial values

In the TURBIT programs, periodical boundary con-
ditions are applied in the main flow direction and nor-
mal to it parallel with the walls. For reasons of costs,
it is hardly justified to record the total length and the
whole circumference of the downcomer, the more so
since this is not reasonable at all because of its perio-
dicity, at least not in the main flow direction. There-
fore, only a control volume is recorded having the
length Xy, X and D (fig. 2) which, however, is trans-
ported thru the downcomer at the mean velocity. To
describe this control volume, the proven grid K7 from
ref. [2] is used. Hence, the following assumptions are
made on the computational model:

— The downcomer is represented by a plane channel.

The justification of this assumption can be derived

from fig. 1 because of the low ratio of radii of 1.11.
— The grid possesses 16 meshes in the mean flow

direction, 8 in the “circumferential direction”, and 16

e ) -ooi

TT!M 20 L
X1 i

qwi=0] X3

Qw2=0

|1,

e

Fig. 3. Downcomer problem transferred to the computer
model. The control volume of length 2D is temporarily at a
distance Z from the downcomer inlet.

in the radial direction; the length of periodicity in the
mean flow direction is X; = 2D and in the x,-direction
(p-direction of the pressure vessel) X, = D (fig.2).

— In order to precalculate a limiting case, it is
assumed that the two mass flows with the tempera-
tures 7}, = 310°C and T, = 252.5°C enter the down-
comer without mixing (fig. 3).

— The space portions of the hot and cold zones
correspond to the ratio each of the two mass flows
(thy, = 62.4 t/h and i1 = 180 t/h).

— The walls are adiabatic.

— The dimensionless numbers to be specified are
predetermined in accordance with the material values
for water at a pressure of 110 bar. Thus the moleculat
Prandtl number is Pr = 0.89.

— The Reynolds number to be specified Re; =
Reg = 3300 results in the normalization selected from
the friction coefficient law according to Blasius. The
related Reynolds number calculated with the chan-
nel width D =0.15 m and the averaged velocity is
Re =72 440.

— The Grashof number to be specified in the mean
flow direction, Gryy, is calculated by means of Tw1=
Ty and Ty, = T, which means by use of the zone
temperatures. Grgy = —2.27 X 10!° <0, since the
vector of gravitaty g in the positive x,-direction is set
positive. The transverse components of the buoyancy
term are zero because of the vertical arrangement,
implying Grg, = Grgz = 0.

To start the integration of the non-stationary 3-
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dimensional equations of conservation for mass, mo-
mentum and enthalpy, the entire 3-dimensional fields
for u; and T must be predetermined at the time ¢ =

0. Since both mass flows are directed along walls
(core barrel inner face and pressure vessel bottom)
when approaching the downcomer inlet, it is assumed
that the velocity field during entry of the downcomer
has almost fully developed. The respective initial
values are derived from integration results available
for the same grid. For this purpose, the averaged velo-
city profile is corrected according to the universal
logarithmic wall laws for the Reynolds number under
consideration, and the statistical properties of the
velocity variations are taken over without modifica-
tions.

To obtain a conservative estimate of the mixing
behaviour, the temperature field is completely decoupled
statistically from the velocity field. It is assumed that
the averaged temperatures are constant in the radial
direction within the two zones. They are superimposed
by a fluctuating part with a maximum amplitude of
1%, generated by a psuedo random number generator,
This ensures the consistency of the selected initial con-
ditions because constant profiles are associated with a
radial turbulent heat flux of the order of zero, which
can be obtained most conveniently in the specifica-
tion by complete decoupling of the velocity and tem-
perature fields.

To better judge the influence of buoyancy, a nume-
rical simulation is first made in which at Grgy =0,
influences of buoyancy are not effective. This simu-
lation therefore treats the mixing behaviour of a pas-
sive scalar variable in purely forced convection. The
rest of input data are identical with the case specified
above.

Table 1

4. Evaluation of the results of simulation

Starting from the initial values indiciated above,
the system of equations underlying the method of
simulation was integrated over 20 and 45 min, respec-
tively, of CPU-time on the IBM 370/168 installed at
the Karlsruhe Nuclear Research Center (Table 1). Of
the non-stationary, 3-dimensional results obtained for
the three velocity components, the pressure, the
temperature and the subgrid-scale energy, a complete
data set was stored on magnetic tape for each sixtieth
time interval only. Because of the periodical boundary
conditions, it is possible to evaluate these data by aver-
aging over surfaces parallel to the wall so that the
expensive ensemble averaging over several simulations
with differing statistical initial fields can be avoided.

The periodical boundary conditions, on the other
hand, transform the control volume into a plane chan-
nel of infinite extension. Consequently, the axial devel-
opment of the flow fields cannot be considered with-
out expensive additional transformations [2, p. 65] in
a meaningful way within the control volume. There-
fore, the control volume is transported here at the
averaged velocity through the downcomer, and the
axial development in the downcomer is concluded
from the time dependent development in the control
volume. Since during this process, axial gradients can-
not act upon the control volume, the numerical results
have to be considered as merely qualitative. Thus, all
results indicated below haven been converted into the
path Z covered (see fig. 3) in the downcomer using the
averaged velocity of the control volume and problem
time. When discussing the numerical results, the aver-
ages v- and j- are omitted for the sake of simplicity.
However, because of eq. (7a), all temperatures are

Some final results of both numerical simulations. NT = number of time steps; the final values are identified by the subscript max

tmax
Case  Groy CPU-time  NT tmax  Zmax = f Yupdt  ATwZmaw)  Gr1(Zmax)
(min) 0
I 0 19.3 1020 2.33 50.38 0.285 0
i —2.27x 1010 44.3 2280  2.14 32.36 0.5x 103 -1.1x 107
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obviously mesh volume averaged values, and because
of eq. (7b), all velocities are mesh surface averaged
values. At the rms-values of the temperature fluctua-
tions, the isotropic subgrid-scale portions according

to [2, appendix 6] are added to the directly resolved
large-scale portions and in case of turbulent heat fluxes
the subgrid scale portions eq. (9b).

4.1. Decay of the temperature field in purely forced
convection

In case I, the calculated temperature field, as a
passive scalar quantity, is in the parameter range under
consideration essentially a function of the turbulent
velocity fields only. Therefore, its maximum credibi-
lity cannot exceed those of the latter. The TURBIT
computer code was previously compared extensively
with experimental results for forced convection in
annular gaps and plane channels [2,5,18]. In the case
considered here, the numerical results of the momen-
tum portion are therefore not validated by experimen-
tal results.

Within the prescribed computer time, the control
volume covers a path of Z .4 = 50.4 (table 1). This
value agrees quite well with the length of the down-
comer according to fig. 1, which is L =7.57 m/0.15
m =~ 50.5. Consequently, the final values of this simu-
lation can be considered as directly applicable to the
outlet of the downcomer.

1.00
i

0,80
i

(T-Twz?
0,60
Mb o%x +p 0O
©
-

0.40
i

0.20
i

o0.00

.00

Fig. 4. Radial temperature profiles for different distances Z
from the entrance of the downcomer in the case of purely
forced convection (case I).

For detailed evaluation the development of the
temperature profile, the rms-value profile, and the
radial turbulent heat flux profile have been indicated
in the HDR-downcomer as general representations for
selected points Z in figs. 4 to 6. The partly irregular
profiles can be attributed to inadequate averaging.
The planes parallel to the wall obviously contain too
low a mesh number to achieve reliable averaging. The
temperature profile (fig. 4) first reveals a quick and
subsequently a slower decay. First, at Z = 2.3, the
nearer hot wall is reached by the mixing zone. The
more distant cold wall is reached between Z = 12 and
19. The subsequent reduction of temperature differ-
ences takes place almost symmetric to the channel
center.
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the temperature fluctuations in purely forced convection
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ference involves that the profiles in the upper half of the
downcomer get nearly independent of Z.
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It can be seen from figs. 5 and 6 that the quick
decay at the beginning is paralleled by high tempera-
ture fluctuations and also by high turbulent heat
fluxes in the positive xs-direction, i.e. towards the
colder zone. Both variables developed so quickly that
they reached their absolute maxima as early as at
Z = 5.5 and decrease again for a higher value of Z.

The conclusion might be drawn that the influence
of the selection of statistically decoupled initial tempe-
rature values is low, which means that it corresponds
to a maximum uncertainty in the axial coordinate of
AZ =~ 5. The respective maxima of the profiles of both
variables do not occur next to the wall, as is the case
for non-adibatic walls, but in the region of the max-
imum radial temperature gradient. If the profiles are
normalized to the local wall temperature differences,

both the rms-temperature value profiles and the pro-
files of the radial turbulent heat flux become nearly
independent of Z for a high value of Z, which means
that the entrance effects of the channel have nearly

vanished and an equilibrium condition has been ob-

tained.

At the end of simulation, which means approxi-
mately at the upper end of the downcomer, there is
still a wall temperature difference of 28.5% related
to the initial value (table 1). This means that the com-
pensation of temperature is far from being terminated;
this likewise appears from the radial turbulent heat
flux at the end of simulation, which differs markedly
from zero. For case II, influenced by buoyancy, the
conclusion might be drawn that the local Grashof
number is insignificantly reduced by the low reduc-
tion of the local wall temperature difference only so
that considerable buoyancy influences would have to
be expected at the outlet of the downcomer.

4.2. Decay of the temperature field in case of mixed
convection

The path covered by the control volume within
the given computer time is only Z,,x = 32.4 in case
II of the forced convection, heavily influenced by
buoyancy (table 1). Despite the longer computer time
by a factor of 2.3 as compared to case I, this path is

Table 2

Development of the local Grashoff number Gry, the aver-
aged velocity Y(u}), and the ratio of friction coefficients
overZ

z —-Gry Yupd  Ce/Cere  CelCrgcpet

0.6 0.227 x 1011
1.3 0.227 x 1011
2.0 0.223 x 101!
2.7 0.174 x 1011
3.6 0.134 x 1011
4.7 0.966 x 1010
5.9 0.328 x 1010
7.2 0.686 x 10°
9.0 0.279 x 107
11.2 0.140 x 10°
15.6 0.643 x 108
19.8 0.391 x 108
26.1 0.216 x 108
324 0.114 x 108

21.39 1.07 9.11
20.87 1.12 9.33
20.42 1.16 9.47
18.98 1.32 9.23
17.14 1.58 9.20
15.62 1.86 8.86
14.88 2.02 6.06
14.42 2.13 3.39
14.35 2.15 2.44
14.32 2.16 1.93
14.40 2.14 1.53
14.55 2.10 1.35
14.85 2.03 1.20
15.16 1.96 1.11
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nevertheless smaller by a factor of 1.6. A main reason
is the occurrence of locally, very high velocities which,
via the time interval automatism according to Schu-
mann [19], strongly reduce the reliable time interval
for the explicit integration technique. Although the
path covered is shorter than the length L of the down-
comer, it nevertheless allows conclusions to be drawn
for the HDR downcomer problem with a sufficient
accuracy.

The velocity %u,) averaged over the control volume
is shown in table 2, as an integral variable for the velo-
city field. The averaged velocity and hence the Reynolds
number actually obtained are not constant since in
TURBIT-3, normalization variables are used which
are defined as being constant. The averaged velocity
decreases quickly, remains constant until Z = 5 over
a large range, and subsequently rises slowly again at
the end of simulation. This particular feature of simu-
lation also allows to draw but qualitative conclusions
for HDR since the changes accordingly reduce the
actual Reynolds number by 30%.

The comparison of the increased friction factor
with respect to forced convection with the Petukhov
criterion [16] shows that, nevertheless, the numerical
results can be compared quantitatively (table 2). The
ratio Cy/Cys, of the friction coefficients after a short
entrance length attains its maximum value of 2.16 at
Z =9-—11. This value agrees rather well with the value
obtained for fully developed flows according to the
Petukhov criterion, if one uses the respective local
dimensionless numbers. Subsequently, the Petukhov
result remains under the numerical one and, accord-
ingly, the averaged velocity rises again. This confirms
that in the case studied, neglecting the influences
from buoyancy on the formulation of the wall approx-
imation actually has no remarkable practical influence
on the numerical results.

The development of the-numerically simulated velo-
city and temperature profiles appears from the general
representations of figs. 7 and 8. Fig. 7 gives an impres-
sion of the initial phase of simulation. The fluid is
considerably accelerated at the hot wall and substan-
tially decelerated at the cold wall. At Z =1.3 reflow
occurs over more than 60% of the channel section.
Although the spatial extension of reflow is reduced
at a higher value of Z by increase of temperature in
the previously cold region of the mixing zone, the
maximum reflow velocity continues to rise. Already
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Fig. 7 Radial velocity and temperature profile in the entrance
region of the downcomer up to Z = 7.2 under condition of
mixed convection (case II). The maximum velocity is attained
at about Z = 2.7, the minimum velocity at Z = 4.7,

at Z =2.7 the positive velocity in the hot zone reaches
its absolute maximum value of approximately 7 times
the averaged initial velocity since the temperature is
reduced quickly in this zone. For greater values of Z
this maximum value initially decreases at a low rate
only.

The absolute minimum of velocity, i.e., the absolute
maximum value of reflow velocity, reaches 4.5 times
the averaged initial velocity at Z = 4.7. At this point,
the cold wall is reached by the mixing zone in the
temperature field. This means that the pressure differ-
ence caused by buoyancy

GrOl
Red

Apndx3) =5 (XT) — (T(x3))) (18)

is reduced also in the cold zone by progressing flatten-
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Fig. 8. Radial velocity and temperature profiles for Z > 9
under condition of mixed convection (case II). AtZ > 9
local reflow does no longer occur.

ing of the temperature profile. Subsequently, these
profiles undergo quick changes. At Z = 7.2, the tempe-
rature profile scems to be largely linear and constant.
Here, the temperature difference between the two
walls amounts to only about 9% of the initial value.
The positive and negative extreme values of velocity
are reduced accordingly. It gets obvious that this simu-
lation provides a quicker decay of the temperature
field than that for purely forced convection (section
4.1).

The end of local reflow in the cold zone can be
found at roughly Z =9 (fig. 8). The related tempera-
ture profile makes visible differences from the final
result or the volume averaged temperature XT) =
0.248 with a modified imaging scale only because the
wall temperature difference has decreased to about 1%
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Fig. 9. Radial profiles of the rms values of the temperature
fluctuations and the radial turbulent heat flux in the entrance
region of the downcomer up to Z = 7.2 under condition of
mixed convection (case II).

of the initial value. The suppression of reflow already
at this point is surprising since the local net difference
of driving pressure near the cold wall is still negative.

(2}

~-8

ox

Z=9,x3=0.03

Obviously, this introduction of local axial negative
momentum is overcompensated by the turbulent mo-
mentum which is transverse relative to the mean flow
direction. The net difference of the driving pressure
is positive in the entire channel for Z > 17.6 only.

At the end of simulation for Z = 32 .4, the velocity
profile is nearly symmetric again because the compen-
sated temperature field exerts practically no more influ-
ence on the net difference of the driving pressure (fig. 8).
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According to table 1, the wall temperature difference
decreases to only 0.5%o of the initial value. The related
local Grashof number has reduced accordingly by
more than 3 orders of magnitude.

It can be explained by the profiles of the tempera-
ture fluctuations and the radial turbulent heat flux
how the quick reduction of the temperature differ-
ences is brought about. Fig. 9 shows that the quick
decay of the temperature field is related to high temp-
erature fluctuations for small values of Z and also to
high radial turbulent heat fluxes in the positive x3-
direction, i.e., towards the colder zone. The respective
maxima of the profiles of both variables neither occur
near the wall as is the case during forced convection
in channels having non-adiabatic walls, but rather as in
case I and, as indicated by Carr et al. [20] and Brown
and Gauvin [21], at some distance from the wall and
obviously in agreement with the results by Kotsovinos
[22], near the maxima of the radial temperature gra-
dient and the radial velocity variations respectively.

The quantitative comparison with the case of
forced convection makes evident that the radial heat
flux developing here is greater by approximately the
factor 3—5 (fig. 6) and the rms-values of temperature
fluctuations are accordingly lower (fig. 5). The effects
on the temperature field can be derived qualitatively:
As observed in experiments on plane jets, performed
by Kotsovinos [22], the buoyancy, contrary to the
simulation without buoyancy effects, also in this
case leads to doubling of the velocity fluctuations and
thus tends to increase the radial turbulent heat flux.
The latter results in a faster reduction of radial tem-
perature differences. Since the temperature fluctua-
tions can be generated only in zones characterized by
temperature differences and it is known that they
require much longer distances for generation than the
temperature profile itself, smaller rms temperature
values are obtained in the temperature field decaying
at a faster rate.

The profiles of fig. 9 normalized by the local wall
temperature differences are represented in fig. 10.
Within the range represented up to Z = 7.2, the rms
temperature value and the radial heat flux increase.
Results independent of Z have not yet been obtained.
Only for Z > 7.2, approximately constant results are
obtained at the rms value, and in the turbulent heat
flux over the simulated transport length not at all
(fig. 11). The cause lies in the transition of flow
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Fig. 10. Profiles of the rms values of the temperature fluctua-
tions normalized by the local wall temperature differences and
profiles of the radial turbulent heat flux up to Z = 7.2 (case
II). Legend similar to fig. 9.

strongly influenced by buoyancy at the beginning
into purely forced convection towards the end of
simulation: The normalized rms temperature values
have roughly the same size in the case of forced con-
vection (fig. 5) and mixed convection (fig. 11) except
for the shapes of profiles which result from the S-shaped
and linear temperature profiles, respectively. By
contrast, the normalized radial heat flux is greater by
nearly one order of magnitude because of the faster
compensation of temperatures (figs. 10 and 11) as
compared with forced convection (fig. 6). This differ-
ence is reduced with decreasing influence of buoyancy
so that towards the end of simulation at Z =324 a
heat flux profile develops which is comparable with
that of forced convection. This means that the results
found here are inherently consistent and compatible
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Fig. 11. Profiles of the rms values of the temperature fluctua-
tions normalized by the local wall temperature differences and
profiles of the radial turbulent heat flux for Z > 9 (case II).

with the results given in section 4.1.

A direct quantitative verification of these results
is not possible because comparable experiments are
missing. It results from the experiments with vertical
plane buoyant jets performed by Kotsovinos [22],
who has also measured a relative rms temperature
value of 40% and from the comparison of friction
factors that these results are not completely useless.
This finding is as well as confirmed by the results by
Carr et al. [20] and Brown and Gauvin [21] which are
applicable to non-adiabatic vertical channels where
rms values had been found for mixed convection which
were higher than the known 10—20% values of purely
forced convection.

The major results to be obtained of simulating
mixed convection are that in this case a much faster
reduction of the wall temperature difference takes
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Fig. 12. Decrease of difference of the wall temperatures AT,
over the logarithm of the axial length Z.

place as compared with purely forced convection.
Moreover, the apprehended development of a hot
self-sustaining chimney extending over the entire
height of the downcomer did not occur. The reflow
at the inlet is eliminated by an intensified turbulent
transverse exchange for higher values of Z. Thus,
these calculations confirm the experience that reflow
develops only over the entire channel length in case
of opposing pressure and buoyancy forces [8,16],
which means in case of heated downard flow or
cooled upward flow.

4.3. Decay laws for both cases

The development of the wall temperature differ-
ence dependent on the development length has been
plotted in fig. 12 for both cases on a semi-logarithmic
scale. Similar to all decay processes, an exponential
dependency is found also here over large ranges. In
case I, the wall temperature difference follows a z=%7
law. Experimental results which would be directly
comparable are not available so that the behaviour of
round and plane jets again or even isotropic grid turbu-
lence must be referred to. Thus, Warhaft and Lumley
[23] have found downstream of a heated grid decay
laws for the rms temperature values, which correspond
to Z~™, with the exponent m from 0.87 to 3.1. The
value found here which, on account of fig. 5, for great
values of Z applies both to the rms value and to AT,
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is lower since inhomogeneous channel flow continu-
ously produces new temperature fluctuations imply-
ing a slower rate of decay. For a plane jet, Chen and
Rodi [24] indicate an exponent of 0.5 and for a
round jet an exponent of 1.0. For the turbulent
boundary layer with slot injection, which is still best
comparable in a direct way, in his review paper Gold-
stein [25] indicates an exponent of 0.8 for the adia-
batic wall effectiveness which is proportional to the
wall temperature. Thus, the decay law evaluated from
numerical simulation is compatible with the literature
references cited above.

As to the plot for case I, four zones can be clearly
distinguished: The entrance zone, two successive zones
with exponential decrease, and the asymptotic decay
range with AT,, - 0. The latter is not attained in case
of simulation without natural convection at the upper
end of the downcomer for Z = L = 50.5, since there
the temperature field decays at a much slower rate.

As in case I the entrance zone is characterized by
a nearly constant value of AT,. Itendsat Z~2.1t
can be concluded from the short entrance zone that
the prescription of initial temperature values comple-
tely decoupled from the initial values of velocity also
in case II do not exert a remarkable influence on the
mixing behaviour. The minor influence of displace-
ment by AZ = 2 toward AT, does not alter the state-
ment that at the end of simulation influences by
natural convection can be neglected.

The first exponential zone is limited by 2 <Z <5.
Here, the wall temperature difference follows quite
well a Z~!-38 law. The end of this zone coincides with
the point where the mixing zone reaches the right cold
wall according to section 4.2, fig. 7, which means

that it coincides also with the place where the maximum

reflow velocity is established. Consequently, the wall
temperature T, is constant up to here. Therefore,
this range can be compared best with thermal buoyant
jets. The dependency found agrees well with the
experience by Liburdy and Faeth [26] who state
that thermal wall jets in a quiescent medium show a
somewhat faster decrease than Z~!. Moreover, the
dependency found lies again between the Z ~1aw by
Chen and Rodi [24] for plane buoyant and the z—s3
law by Seban and Behnia [10] and Chen and Rodi
[24] for round buoyant jets.

The addition “quiescent medium” is not to be
considered as an other restriction of the comparison

since the hot zone in the initial phase is practically
governed by the buoyancy term Ap,.: at the begin-
ning it reads Ap, (¢ = 0) = 1564 >> 2 and hence, it is
much greater than the pressure gradient imposed.
Moreover, the velocity and the heat flux in this zone
are greater by a multiple as compared with purely
forced convection.

The second exponential zone is limited by the con-
dition 5 < Z < 6.4. Here a Z~1-32 law roughly applies.
The decrease of AT, is obviously steeper than in the
first exponential zone since here both wall tempera-
tures are changed by turbulent mixing. Compared
with the Z°7 reduction for case I, we found here
much steeper exponential reductions of AT,,. At the
end of this region AT, has been reduced to already
6% of the initial value.

The asymptotic transition of ATy, towards zero
can be evaluated less from fig. 12 than from table 2.
The order of magnitude of the local Grashof number
and, hence, also the wall temperature difference are
further reduced quite markedly here. At the end of
simulation 5 X 10™* of the initial wall temperature
difference remains. The related local Grashof number
has decreased accordingly to 1 X 107. Consequently,
in this zone the buoyancy term is smaller than the
imposed pressure gradient.

Hence, with respect to the HDR problem it can be
shown with adequate certainty that the strong influ-
ences of buoyancy act stabilizing when entering the
downcomer in the sense that they decay at a relatively
fast rate so that at the upper end of the downcomer
no more effects can be found and the two entering
fluid mass flows are adequately mixed.

5. Conclusions for the problem of enthalpy stratifica-
tion in the HDR

To discuss the influence exerted by natural convec-
tion effects in the HDR-downcomer it is significant
for the setting of reactor typical initial conditions for
blowdown tests to know how stable radial tempera-
ture discontinuities are in the downcomer and how
fast they are reduced in case of flow passage through
the downcomer. This problem for which comparable
experimental results have not been known previously,
is studied by means of the numerical direct simulation
technique realized in the TURBIT-3 computer code.

To consider consistently the influences by buoy-
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ancy in the computer code both the complete Navier-
Stokes equations were extended by the buoyancy term
in form of the Boussinesq approximation and the
energy equation for subgrid scale structures used in
the subgrid scale model was extended by the related
production term. When formulating the wall condi-
tions some problems remain unsolved according to

the present state of knowledge regarding mixed
convection. However, the results allow the conclu-
sion to be drawn that in the case under consideration
the extensions introduced, especially as regards the
energy equation, are of greater importance than an
exact formulation of the wall conditions. By this

and due to some problems such as the application of
periodical boundary conditions and the special type of
normalization, the numerical results obtained can be
transferred only qualitively to the entrance problem
of the downcomer.

As a limiting approximation for the HDR-problem
the decay of a jump in the radial temperature profile
was studied for an adiabatic channel, as may occur
by insufficient mixing at the inlet to the downcomer.
Influences by natural convection had not been con-
sidered initially. It appeared that in purely forced
convection serious mixing of both temperature zones
is not expected. The difference of wall temperatures
remaining at the upper end still amounts to about 25%
of that at the lower end. After a short entrance length
the wall temperature difference follows an exponen-
tial decay law.

By contrast, a second simulation in which the
influences of buoyancy are taken into account, pro-
vides much quicker mixing. The radial velocity pro-
files determined are characterized in the entrance zone
by high accelerations in the hot zone and decelerations
in the cold zone. Thus, within the first nine channel
widths considerable reflow occurs in the cold zone
which, actually, would lead to intensive mixing at the
HDR inlet of the downcomer. Downstream of the
area of reflow the influence of the buoyancy term
disappears very quickly so that even towards the end
of simulation conditions of quasi-forced convection
are encountered. Thus, in this simulation, the formation
of continuous hot “chimneys” was not observed and
is certainly not to be expected in the downcomer of
the HDR, provided that the radial heat losses from the
pressure vessel are negligible as compared with the
rest of heat fluxes.

The evaluation of the temperature difference

. being established between the hot internal wall and the

cold external wall of the downcomer leads to a much
quicker reduction over the axial length than in case of
simulation without influences of buoyancy. The wall
temperature difference follows two exponential decay
laws: it follows a Z~1-381aw in the entrance zone and,
subsequently, after the mixing zone has spread over the
whole channel in the radial direction, it follows a
Z~1-82 jaw. In the following asymptotic transition
towards zero the wall temperature difference falls
below the 1 per thousand limit after having passed
half the length of the downcomer. The influence

of buoyancy is of minor importance for subsequent
development.

By the examples of the radial turbulent heat fluxes
evaluated from both simulations it was shown how
the influence of buoyancy leads to the quicker mixing
of both temperature zones through an intensified
production of turbulence in the entrance zone. The
results of temperature field statistics were verifiable
at least in some points despite the lack of adequate
experimental information. Besides, they are consis-
tent with the rest of results and also compatible with
those of the simulation without buoyancy. They
allow the conclusion to be drawn that in the not
ideal adiabatic reality of the HDR downcomer even
slightly faster mixing of the cold and hot zones can
be anticipated. Hence, in the available results of simu-
lations, no phenomenon was found which would
require a change in testing aimed at the adjustment

“of enthalpy stratification at the HDR reactor. After

closing this theoretical investigation, measurements
of the temperature field have been made in the HDR
reactor which are in accordance with this conclusion
[27].

This calculation of an engineering like problem
using the TURBIT-3 computer code shows that the
direct numerical simulation technique together with
a subgrid scale model of the single transport equation
type is a very helpful tool not only in basic research.
Compared with the statistical turbulence models
currently used, the expenditure in terms of computer
time with this method is comparable since expensive
test calculations due to “the battle of the constants”
can be largely avoided. The model assumptions exert
only a weak influence on the results. They possess a
larger range of validity. Moreover, direct numerical
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simulation when using the classification by Saffman
[28], constitutes the only method which must not
be used only as a “postdictive” but also as a “pre-
dictive” one.

Nomenclature
Operator notation for any quantity Y
= any dimensionless quantity

Y
)4 = any dimensional quantity
Yy = volume mean value, eq. (7a)

'y = surface mean value for the surface /F
with the normal in the x;-direction
eq. (7b)

09 = time or ensemble mean value

uY» = mean value taken over the flow volume
recorded

Y = deviation from a mean value

vy’ = volume mean value of the subgrid scale
structure

8; = finite difference operator in the x;-
direction, eq. (7b)

8y = Kronecker delta

Latin symbols

= thermal diffusivity
= subgrid scale coefficients
= friction factor
= channel width
= kinetic energy
= surface area of a grid surface with the
normal in the x;-direction
= acceleration due to gravity
1 = Grashof number, egs. (2) and (5)
= characteristic width of grid cell
= mixing length
= length of downcomer (fig. 3)
= mass flow rate
Min(a,b) = minimum between g and b [Min(g, b) =
a for a <b and vice versa)

g mb Qs

I N~ AN

p = pressure

Pr = molecular Prandtl number, eq. (2)
g = heat flux

Re = Reynolds number, eqs. (2) and (5)
t = time

T = temperature

u = velocity, according to fig. 2

X; = ]ocal coordinate in the computer model
(figs. 2 and 3)

Ax; = width of grid cell in the x;-direction

X; = periodicity length in the x;-direction
(fig. 2)

zZ = axial coordinate in the downcomer (fig.
3)

Greek symbols

g = volume expansion coefficient § =
~1/p(3p/0T)

€ = dissipation

u = turbulent SGS viscosity for momentum

v = kinematic viscosity

o = density

T = shear stress

Subscripts

c = cold

fc = forced convection

h = hot

HDR = Heiss-Dampf-Reaktor (superheating
steam reactor)

i,j = subscript for direction (fig. 2)

nc = natural convection

t = turbulent

T = temperature part of equations

wl,2 =wall values at x3=0,D

T = related to wall shear stress (velocity),
eq. (3)

0 = normalized variable at time =0
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