Schedule of the course

Computational Fluid Dynamics with Open-Source software OpenFoam

Mo 13.10	Tue 14.10 9 ³⁰ - 14 ⁰⁰	Wed 15.10	Thu 16.10 9 ³⁰ - 14 ⁰⁰	Fri 17.10
Opening meeting Introduction, what is OpenFoam, Linux commands Overview of OpenFOAM Documentation, code structure, directory organization of a case (fundamentals of case structure) Finite volume method First OpenFOAM exercise Lid-driven cavity (setting a case, boundary and initial conditions, solver and control parameters) Check list for cavity (what we learnt!)	Zoom Meeting for questions and discussion	Introduction to 3D laminar flow in a circular pipe Meshing tools: blockMesh + m4-script Mesh generation with parameters Snappy Hex Mesh (SHM) Exercises 3D flow in a circular pipe Study of various BCs Post-processing Generation of geometry and mesh (pipe) with m4 parametrization Example for SHM Check lists (what we learnt!)	Zoom Meeting for questions and discussion	Open issues/ questions can be sent per email

Day1-P1 Day2-P2 Day2-P2

Mo 20.10	Tue 21.10 9 ³⁰ - 14 ⁰⁰	Wed 22.10	Thu 23.10 9 ³⁰ - 14 ⁰⁰	Fri 24.10
Meshing tools: Adaptive mesh refinement (AMR) External tools and conversion to OF format Kármán vortex street (theory) functionObjects (e.g. time averaging, calculation of forces) Exercises Kármán vortex street (transient flow) Structured mesh (blockMesh) AMR Comparison of results with two grid generation methods Check list for Kármán vortex street (what we learnt!)	Zoom Meeting for questions and discussion	Programming Implementing the temperature equation in a solver Implementing a new time-dependent boundary condition Exercises Application of new BC and solver with T-equation Turbulent flow (theory and exercises) Summary & Best practice guidelines	Zoom Meeting for questions and discussion Closing meeting	
Part3 ———		Part4 ———		
Day1-P3	Day2-P3	Day1-P4	Day2-P4	

Organisation

- Each part is organized as follows:
 - Day1 (Monday and Wednesday)
 - Files for the course are provided:
 - 1. Lectures (videos, *.mp4)
 - 2. Slides of lectures (pdf)
 - 3. Exercises (pdf)
- Day1 (Mo or Wed) Files distribution
 Day2 (Tue or Thu) Discussion meetings
 + check meeting

Part2

Week 2

Part4

Wed+Thu

Part3

Mo+Tue

Week 1

Part1

- o No common meeting is foreseen (send email if you need support!)
- Day2 (Tuesday and Thursday): 9:30am 2pm, discussion with teachers via Zoom meeting (Link, Meeting ID, Passcode will be send per email)

Use the one-to-one discussion on Day2! Enter the meeting **whenever** you have an issue or a question!

→ If you have problems on Day1 of each part send an email to chiara.mistrangelo@kit.edu or biao.lyu@kit.edu